2 research outputs found

    An Energy-Aware Approach to Design Self-Adaptive AI-based Applications on the Edge

    Full text link
    The advent of edge devices dedicated to machine learning tasks enabled the execution of AI-based applications that efficiently process and classify the data acquired by the resource-constrained devices populating the Internet of Things. The proliferation of such applications (e.g., critical monitoring in smart cities) demands new strategies to make these systems also sustainable from an energetic point of view. In this paper, we present an energy-aware approach for the design and deployment of self-adaptive AI-based applications that can balance application objectives (e.g., accuracy in object detection and frames processing rate) with energy consumption. We address the problem of determining the set of configurations that can be used to self-adapt the system with a meta-heuristic search procedure that only needs a small number of empirical samples. The final set of configurations are selected using weighted gray relational analysis, and mapped to the operation modes of the self-adaptive application. We validate our approach on an AI-based application for pedestrian detection. Results show that our self-adaptive application can outperform non-adaptive baseline configurations by saving up to 81\% of energy while loosing only between 2% and 6% in accuracy

    Sustainable environmental monitoring via energy and information efficient multi-node placement

    No full text
    The Internet of Things is gaining traction for sensing and monitoring outdoor environments such as water bodies, forests, or agricultural lands. Sustainable deployment of sensors for environmental sampling is a challenging task because of the spatial and temporal variation of the environmental attributes to be monitored, the lack of the infrastructure to power the sensors for uninterrupted monitoring, and the large continuous target environment despite the sparse and limited sampling locations. In this paper, we present an environment monitoring framework that deploys a network of sensors and gateways connected through low-power, long-range networking to perform reliable data collection. The three objectives correspond to the optimization of information quality, communication capacity, and sustainability. Therefore, the proposed environment monitoring framework consists of three main components: (i) to maximize the information collected, we propose an optimal sensor placement method based on QR decomposition that deploys sensors at information- and communication-critical locations; (ii) to facilitate the transfer of big streaming data and alleviate the network bottleneck caused by low bandwidth, we develop a gateway configuration method with the aim to reduce the deployment and communication costs; and (iii) to allow sustainable environmental monitoring, an energy-aware optimization component is introduced. We validate our method by presenting a case study for monitoring the water quality of the Ergene River in Turkey. Detailed experiments subject to real-world data show that the proposed method is both accurate and efficient in monitoring a large environment and catching up with dynamic changes
    corecore