3,768 research outputs found

    Entanglement and the Phase Transition in Single Mode Superradiance

    Full text link
    We consider the entanglement properties of the quantum phase transition in the single-mode superradiance model, involving the interaction of a boson mode and an ensemble of atoms. For infinite system size, the atom-field entanglement of formation diverges logarithmically with the correlation length exponent. Using a continuous variable representation, we compare this to the divergence of the entropy in conformal field theories, and derive an exact expression for the scaled concurrence and the cusp-like non-analyticity of the momentum squeezing.Comment: 4 pages, 2 figue

    Truncation method for Green's functions in time-dependent fields

    Full text link
    We investigate the influence of a time dependent, homogeneous electric field on scattering properties of non-interacting electrons in an arbitrary static potential. We develop a method to calculate the (Keldysh) Green's function in two complementary approaches. Starting from a plane wave basis, a formally exact solution is given in terms of the inverse of a matrix containing infinitely many 'photoblocks' which can be evaluated approximately by truncation. In the exact eigenstate basis of the scattering potential, we obtain a version of the Floquet state theory in the Green's functions language. The formalism is checked for cases such as a simple model of a double barrier in a strong electric field. Furthermore, an exact relation between the inelastic scattering rate due to the microwave and the AC conductivity of the system is derived which in particular holds near or at a metal-insulator transition in disordered systems.Comment: to appear in Phys. Rev. B., 21 pages, 3 figures (ps-files

    Three-level mixing and dark states in transport through quantum dots

    Full text link
    We consider theoretically the transport through the double quantum dot structure of the recent experiment of C. Payette {\it et al.} [Phys. Rev. Lett. {\bf 102}, 026808 (2009)] and calculate stationary current and shotnoise. Three-level mixing gives rise to a pronounced current suppression effect, the character of which charges markedly with bias direction. We discuss these results in connexion with the dark states of coherent population trapping in quantum dots.Comment: 6 pages, 5 fig

    Finite-Size Scaling Exponents in the Dicke Model

    Full text link
    We consider the finite-size corrections in the Dicke model and determine the scaling exponents at the critical point for several quantities such as the ground state energy or the gap. Therefore, we use the Holstein-Primakoff representation of the angular momentum and introduce a nonlinear transformation to diagonalize the Hamiltonian in the normal phase. As already observed in several systems, these corrections turn out to be singular at the transition point and thus lead to nontrivial exponents. We show that for the atomic observables, these exponents are the same as in the Lipkin-Meshkov-Glick model, in agreement with numerical results. We also investigate the behavior of the order parameter related to the radiation mode and show that it is driven by the same scaling variable as the atomic one.Comment: 4 pages, published versio

    Spin entangled two-particle dark state in quantum transport through coupled quantum dots

    Full text link
    We present a transport setup of coupled quantum dots that enables the creation of spatially separated spin-entangled two-electron dark states. We prove the existence of an entangled transport dark state by investigating the system Hamiltonian without coupling to the electronic reservoirs. In the transport regime the entangled dark state which corresponds to a singlet has a strongly enhanced Fano factor compared to the dark state which corresponds to a mixture of the triplet states. Furthermore we calculate the concurrence of the occupying electrons to show the degree of entanglement in the transport regime.Comment: 9 pages and 3 figure
    • …
    corecore