24 research outputs found

    Schutz oder Schaden für die Gefäße? : Bei Sauerstoffradikalen kommt es auf das Gleichgewicht an

    Get PDF
    Sauerstoffradikale werden für Alterung, Krebs und Herz-Kreislauf-Erkrankungen verantwortlich gemacht. Von diesem schlechten Image profitiert der große Markt der Nahrungszusatzstoffe wie Vitamine, die Radikale im Körper einfangen. Doch in klinischen Studien können keine positiven Effekte durch die Einnahme von Vitaminpräparaten nachgewiesen werden. Warum? Weil Sauerstoffradikale nicht nur schädliche Nebenprodukte des Stoffwechsels sind, sondern auch lebensnotwendige Funktionen wie die Abwehr von Krankheitserregern übernehmen. Sie werden daher im Körper in einem eng regulierten Bereich aktiv produziert. Unsere Arbeitsgruppe am Institut für Kardiovaskuläre Physiologie untersucht Mechanismen der Radikalproduktion durch Nox-Enzyme und erforscht ihre physiologische Bedeutung im Herz-Kreislauf-System

    Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease

    Get PDF
    Rho-family GTPases like RhoA and Rac-1 are potent regulators of cellular signaling that control gene expression, migration and inflammation. Activation of Rho-GTPases has been linked to podocyte dysfunction, a feature of chronic kidney diseases (CKD). We investigated the effect of Rac-1 and Rho kinase (ROCK) inhibition on progressive renal failure in mice and studied the underlying mechanisms in podocytes. SV129 mice were subjected to 5/6-nephrectomy which resulted in arterial hypertension and albuminuria. Subgroups of animals were treated with the Rac-1 inhibitor EHT1846, the ROCK inhibitor SAR407899 and the ACE inhibitor Ramipril. Only Ramipril reduced hypertension. In contrast, all inhibitors markedly attenuated albumin excretion as well as glomerular and tubulo-interstitial damage. The combination of SAR407899 and Ramipril was more effective in preventing albuminuria than Ramipril alone. To study the involved mechanisms, podocytes were cultured from SV129 mice and exposed to static stretch in the Flexcell device. This activated RhoA and Rac-1 and led via TGFβ to apoptosis and a switch of the cells into a more mesenchymal phenotype, as evident from loss of WT-1 and nephrin and induction of α-SMA and fibronectin expression. Rac-1 and ROCK inhibition as well as blockade of TGFβ dramatically attenuated all these responses. This suggests that Rac-1 and RhoA are mediators of podocyte dysfunction in CKD. Inhibition of Rho-GTPases may be a novel approach for the treatment of CKD

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Epigenetik von Herz-Kreislauf-Erkrankungen : Forscher setzen auf "RNA-Therapeutika"

    No full text
    Über epigenetische Prozesse können Umweltfaktoren und Lebensstil unsere Entwicklung und Gesundheit beeinflussen – auch über Generationen hinweg –, ohne die Sequenz der DNA zu verändern. Erst in jüngster Zeit ist es möglich, die Mechanismen auf der molekularen Ebene zu entschlüsseln. Für Herz-Kreislauf-Erkrankungen sind erste Ansätze für epigenetische Therapien in Sicht

    Redox regulation beyond ROS : why ROS should not be measured as often

    No full text
    Based on the concept of oxidative stress, reactive oxygen species (ROS) have been incriminated as the drivers behind almost every cardiovascular pathology. Redox alterations are, however, omnipresent bystanders to changes in cellular activity state. Even when ROS levels are altered, their contribution to pathology is not necessarily causal. Researchers should hesitate to engage in global ROS measurements and rather aim on identifying individual molecular targets of redox regulation

    Organizers and activators : Cytosolic Nox proteins impacting on vascular function

    No full text
    NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production

    Sympathoactivation and rho-kinase-dependent baroreflex function in experimental renovascular hypertension with reduced kidney mass

    Get PDF
    Background: Dysregulation of the autonomic nervous system is frequent in subjects with cardiovascular disease. The contribution of different forms of renovascular hypertension and the mechanisms contributing to autonomic dysfunction in hypertension are incompletely understood. Here, murine models of renovascular hypertension with preserved (2-kidneys-1 clip, 2K1C) and reduced (1-kidney-1 clip, 1K1C) kidney mass were studied with regard to autonomic nervous system regulation (sympathetic tone: power-spectral analysis of systolic blood pressure; parasympathetic tone: power-spectral analysis of heart rate) and baroreflex sensitivity of heart rate by spontaneous, concomitant changes of systolic blood pressure and pulse interval. Involvement of the renin-angiotensin system and the rho-kinase pathway were determined by application of inhibitors. Results: C57BL6N mice (6 to 11) with reduced kidney mass (1K1C) or with preserved kidney mass (2K1C) developed a similar degree of hypertension. In comparison to control mice, both models presented with a significantly increased sympathetic tone and lower baroreflex sensitivity of heart rate. However, only 2K1C animals had a lower parasympathetic tone, whereas urinary norepinephrine excretion was reduced in the 1K1C model. Rho kinase inhibition given to a subset of 1K1C and 2K1C animals improved baroreflex sensitivity of heart rate selectively in the 1K1C model. Rho kinase inhibition had no additional effects on autonomic nervous system in either model of renovascular hypertension and did not change the blood pressure. Blockade of AT1 receptors (in 2K1C animals) normalized the sympathetic tone, decreased resting heart rate, improved baroreflex sensitivity of heart rate and parasympathetic tone. Conclusions: Regardless of residual renal mass, blood pressure and sympathetic tone are increased, whereas baroreflex sensitivity is depressed in murine models of renovascular hypertension. Reduced norepinephrine excretion and/or degradation might contribute to sympathoactivation in renovascular hypertension with reduced renal mass (1K1C). Overall, the study helps to direct research to optimize medical therapy of hypertension

    BIAM switch assay coupled to mass spectrometry identifies novel redox targets of NADPH oxidase 4

    No full text
    Aim: NADPH oxidase (Nox) -derived reactive oxygen species have been implicated in redox signaling via cysteine oxidation in target proteins. Although the importance of oxidation of target proteins is well known, the specificity of such events is often debated. Only a limited number of Nox-oxidized proteins have been identified thus far; especially little is known concerning redox-targets of the constitutively active NADPH oxidase Nox4. In this study, HEK293 cells with tetracycline-inducible Nox4 overexpression (HEK-tet-Nox4), as well as podocytes of WT and Nox4-/- mice, were utilized to identify Nox4-dependent redox-modified proteins. Results: TGFβ1 induced an elevation in Nox4 expression in podocytes from WT but not Nox4-/- mice. Using BIAM based redox switch assay in combination with mass spectrometry and western blot analysis, 142 proteins were identified as differentially oxidized in podocytes from wild type vs. Nox4-/- mice and 131 proteins were differentially oxidized in HEK-tet-Nox4 cells upon Nox4 overexpression. A predominant overlap was found for peroxiredoxins and thioredoxins, as expected. More interestingly, the GRB2-associated-binding protein 1 (Gab1) was identified as being differentially oxidized in both approaches. Further analysis using mass spectrometry-coupled BIAM switch assay and site directed mutagenesis, revealed Cys374 and Cys405 as the major Nox4 targeted oxidation sites in Gab1. Innovation & conclusion: BIAM switch assay coupled to mass spectrometry is a powerful and versatile tool to identify differentially oxidized proteins in a global untargeted way. Nox4, as a source of hydrogen peroxide, changes the redox-state of numerous proteins. Of those, we identified Gab1 as a novel redox target of Nox4

    NOX4 regulates CCR2 and CCL2 mRNA stability in alcoholic liver disease

    No full text
    Recruitment of inflammatory cells is a major feature of alcoholic liver injury however; the signals and cellular sources regulating this are not well defined. C-C chemokine receptor type 2 (CCR2) is expressed by active hepatic stellate cells (HSC) and is a key monocyte recruitment signal. Activated HSC are also important sources of hydrogen peroxide resulting from the activation of NADPH oxidase 4 (NOX4). As the role of this NOX in early alcoholic liver injury has not been addressed, we studied NOX4-mediated regulation of CCR2/CCL2 mRNA stability. NOX4 mRNA was significantly induced in patients with alcoholic liver injury, and was co-localized with αSMA-expressing activated HSC. We generated HSC-specific NOX4 KO mice and these were pair-fed on alcohol diet. Lipid peroxidation have not changed significantly however, the expression of CCR2, CCL2, Ly6C, TNFα, and IL-6 was significantly reduced in NOX4HSCKO compared to fl/fl mice. NOX4 promoter was induced in HSC by acetaldehyde treatment, and NOX4 has significantly increased mRNA half-life of CCR2 and CCL2 in conjunction with Ser221 phosphorylation and cytoplasmic shuttling of HuR. In conclusion, NOX4 is induced in early alcoholic liver injury and regulates CCR2/CCL2 mRNA stability thereby promoting recruitment of inflammatory cells and production of proinflammatory cytokines

    3D imaging and quantitative analysis of vascular networks : a comparison of ultramicroscopy and micro-computed tomography

    No full text
    Rationale: Classic histology is the gold standard for vascular network imaging and analysis. The method however is laborious and prone to artefacts. Here, the suitability of ultramicroscopy (UM) and micro-computed tomography (CT) was studied to establish potential alternatives to histology. Methods: The vasculature of murine organs (kidney, heart and atherosclerotic carotid arteries) was visualized using conventional 2D microscopy, 3D light sheet ultramicroscopy (UM) and micro-CT. Moreover, spheroid-based human endothelial cell vessel formation in mice was quantified. Fluorescently labeled Isolectin GS-IB4 A647 was used for in vivo labeling of vasculature for UM analysis, and analyses were performed ex vivo after sample preparation. For CT imaging, animals were perfused postmortem with radiopaque contrast agent. Results: Using UM imaging, 3D vascular network information could be obtained in samples of animals receiving in vivo injection of the fluorescently labeled Isolectin GS-IB4. Resolution was sufficient to measure single endothelial cell integration into capillaries in the spheroid-based matrigel plug assay. Because of the selective staining of the endothelium, imaging of larger vessels yielded less favorable results. Using micro-CT or even nano-CT, imaging of capillaries was impossible due to insufficient X-ray absorption and thus insufficient signal-to-noise ratio. Identification of lumen in murine arteries using micro-CT was in contrast superior to UM. Conclusion: UM and micro-CT are two complementary techniques. Whereas UM is ideal for imaging and especially quantifying capillary networks and arterioles, larger vascular structures are easier and faster to quantify and visualize using micro-CT. 3D information of both techniques is superior to 2D histology. UM and micro-CT together may open a new field of clinical pathology diagnosis
    corecore