3,996 research outputs found
Kinematic alpha effect in isotropic turbulence simulations
Using numerical simulations at moderate magnetic Reynolds numbers up to 220
it is shown that in the kinematic regime, isotropic helical turbulence leads to
an alpha effect and a turbulent diffusivity whose values are independent of the
magnetic Reynolds number, \Rm, provided \Rm exceeds unity. These turbulent
coefficients are also consistent with expectations from the first order
smoothing approximation. For small values of \Rm, alpha and turbulent
diffusivity are proportional to \Rm. Over finite time intervals meaningful
values of alpha and turbulent diffusivity can be obtained even when there is
small-scale dynamo action that produces strong magnetic fluctuations. This
suggests that small-scale dynamo-generated fields do not make a correlated
contribution to the mean electromotive force.Comment: Accepted for publication in MNRAS Letter
Properties of - and -modes in hydromagnetic turbulence
With the ultimate aim of using the fundamental or -mode to study
helioseismic aspects of turbulence-generated magnetic flux concentrations, we
use randomly forced hydromagnetic simulations of a piecewise isothermal layer
in two dimensions with reflecting boundaries at top and bottom. We compute
numerically diagnostic wavenumber-frequency diagrams of the vertical velocity
at the interface between the denser gas below and the less dense gas above. For
an Alfv\'en-to-sound speed ratio of about 0.1, a 5% frequency increase of the
-mode can be measured when -, where is the
horizontal wavenumber and is the pressure scale height at the
surface. Since the solar radius is about 2000 times larger than ,
the corresponding spherical harmonic degree would be 6000-8000. For weaker
fields, a -dependent frequency decrease by the turbulent motions becomes
dominant. For vertical magnetic fields, the frequency is enhanced for
, but decreased relative to its nonmagnetic value for
.Comment: 17 pages, 22 figures, Version accepted in MNRA
The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence
A numerical model of isotropic homogeneous turbulence with helical forcing is
investigated. The resulting flow, which is essentially the prototype of the
alpha^2 dynamo of mean-field dynamo theory, produces strong dynamo action with
an additional large scale field on the scale of the box (at wavenumber k=1;
forcing is at k=5). This large scale field is nearly force-free and exceeds the
equipartition value. As the magnetic Reynolds number R_m increases, the
saturation field strength and the growth rate of the dynamo increase. However,
the time it takes to built up the large scale field from equipartition to its
final super-equipartition value increases with magnetic Reynolds number. The
large scale field generation can be identified as being due to nonlocal
interactions originating from the forcing scale, which is characteristic of the
alpha-effect. Both alpha and turbulent magnetic diffusivity eta_t are
determined simultaneously using numerical experiments where the mean-field is
modified artificially. Both quantities are quenched in a R_m-dependent fashion.
The evolution of the energy of the mean field matches that predicted by an
alpha^2 dynamo model with similar alpha and eta_t quenchings. For this model an
analytic solution is given which matches the results of the simulations. The
simulations are numerically robust in that the shape of the spectrum at large
scales is unchanged when changing the resolution from 30^3 to 120^3 meshpoints,
or when increasing the magnetic Prandtl number (viscosity/magnetic diffusivity)
from 1 to 100. Increasing the forcing wavenumber to 30 (i.e. increasing the
scale separation) makes the inverse cascade effect more pronounced, although it
remains otherwise qualitatively unchanged.Comment: 21 pages, 26 figures, ApJ (accepted
Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows
Certain aspects of the mean-field theory of turbulent passive scalar
transport and of mean-field electrodynamics are considered with particular
emphasis on aspects of compressible fluids. It is demonstrated that the total
mean-field diffusivity for passive scalar transport in a compressible flow may
well be smaller than the molecular diffusivity. This is in full analogy to an
old finding regarding the magnetic mean-field diffusivity in an electrically
conducting turbulently moving compressible fluid. These phenomena occur if the
irrotational part of the motion dominates the vortical part, the P\`eclet or
magnetic Reynolds number is not too large, and, in addition, the variation of
the flow pattern is slow. For both the passive scalar and the magnetic cases
several further analytical results on mean-field diffusivities and related
quantities found within the second-order correlation approximation are
presented, as well as numerical results obtained by the test-field method,
which applies independently of this approximation. Particular attention is paid
to non-local and non-instantaneous connections between the turbulence-caused
terms and the mean fields. Two examples of irrotational flows, in which
interesting phenomena in the above sense occur, are investigated in detail. In
particular, it is demonstrated that the decay of a mean scalar in a
compressible fluid under the influence of these flows can be much slower than
without any flow, and can be strongly influenced by the so-called memory
effect, that is, the fact that the relevant mean-field coefficients depend on
the decay rates themselves.Comment: 13 pages, 10 figures, published on PR
Turbulent transport in hydromagnetic flows
The predictive power of mean-field theory is emphasized by comparing theory
with simulations under controlled conditions. The recently developed test-field
method is used to extract turbulent transport coefficients both in kinematic as
well as nonlinear and quasi-kinematic cases. A striking example of the
quasi-kinematic method is provided by magnetic buoyancy-driven flows that
produce an alpha effect and turbulent diffusion.Comment: 17 pages, 6 figures, topical issue of Physica Scripta on turbulent
mixing and beyon
Simulations of galactic dynamos
We review our current understanding of galactic dynamo theory, paying
particular attention to numerical simulations both of the mean-field equations
and the original three-dimensional equations relevant to describing the
magnetic field evolution for a turbulent flow. We emphasize the theoretical
difficulties in explaining non-axisymmetric magnetic fields in galaxies and
discuss the observational basis for such results in terms of rotation measure
analysis. Next, we discuss nonlinear theory, the role of magnetic helicity
conservation and magnetic helicity fluxes. This leads to the possibility that
galactic magnetic fields may be bi-helical, with opposite signs of helicity and
large and small length scales. We discuss their observational signatures and
close by discussing the possibilities of explaining the origin of primordial
magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic
fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria
Magnetic diffusivity tensor and dynamo effects in rotating and shearing turbulence
The turbulent magnetic diffusivity tensor is determined in the presence of
rotation or shear. The question is addressed whether dynamo action from the
shear-current effect can explain large-scale magnetic field generation found in
simulations with shear. For this purpose a set of evolution equations for the
response to imposed test fields is solved with turbulent and mean motions
calculated from the momentum and continuity equations. The corresponding
results for the electromotive force are used to calculate turbulent transport
coefficients. The diagonal components of the turbulent magnetic diffusivity
tensor are found to be very close together, but their values increase slightly
with increasing shear and decrease with increasing rotation rate. In the
presence of shear, the sign of the two off-diagonal components of the turbulent
magnetic diffusion tensor is the same and opposite to the sign of the shear.
This implies that dynamo action from the shear--current effect is impossible,
except perhaps for high magnetic Reynolds numbers. However, even though there
is no alpha effect on the average, the components of the alpha tensor display
Gaussian fluctuations around zero. These fluctuations are strong enough to
drive an incoherent alpha--shear dynamo. The incoherent shear--current effect,
on the other hand, is found to be subdominant.Comment: 12 pages, 13 figures, improved version, accepted by Ap
Proton radiography to improve proton radiotherapy: Simulation study at different proton beam energies
To improve the quality of cancer treatment with protons, a translation of
X-ray Computed Tomography (CT) images into a map of the proton stopping powers
needs to be more accurate. Proton stopping powers determined from CT images
have systematic uncertainties in the calculated proton range in a patient of
typically 3-4\% and even up to 10\% in region containing
bone~\cite{USchneider1995,USchneider1996,WSchneider2000,GCirrone2007,HPaganetti2012,TPlautz2014,GLandry2013,JSchuemann2014}.
As a consequence, part of a tumor may receive no dose, or a very high dose can
be delivered in healthy ti\-ssues and organs at risks~(e.g. brain
stem)~\cite{ACKnopf2013}. A transmission radiograph of high-energy protons
measuring proton stopping powers directly will allow to reduce these
uncertainties, and thus improve the quality of treatment.
The best way to obtain a sufficiently accurate radiograph is by tracking
individual protons traversing the phantom
(patient)~\cite{GCirrone2007,TPlautz2014,VSipala2013}. In our simulations we
have used an ideal position sensitive detectors measuring a single proton
before and after a phantom, while the residual energy of a proton was detected
by a BaF crystal. To obtain transmission radiographs, diffe\-rent phantom
materials have been irradiated with a 3x3~cm scattered proton beam, with
various beam energies. The simulations were done using the Geant4 simulation
package~\cite{SAgostinelli2003}.
In this study we focus on the simulations of the energy loss radiographs for
various proton beam energies that are clinically available in proton
radiotherapy.Comment: 6 pages, 6 figures, Presented at Jagiellonian Symposium on
Fundamental and Applied Subatomic Physics, 7-12 June, 2015, Krak\'ow, Polan
Current status of turbulent dynamo theory: From large-scale to small-scale dynamos
Several recent advances in turbulent dynamo theory are reviewed. High
resolution simulations of small-scale and large-scale dynamo action in periodic
domains are compared with each other and contrasted with similar results at low
magnetic Prandtl numbers. It is argued that all the different cases show
similarities at intermediate length scales. On the other hand, in the presence
of helicity of the turbulence, power develops on large scales, which is not
present in non-helical small-scale turbulent dynamos. At small length scales,
differences occur in connection with the dissipation cutoff scales associated
with the respective value of the magnetic Prandtl number. These differences are
found to be independent of whether or not there is large-scale dynamo action.
However, large-scale dynamos in homogeneous systems are shown to suffer from
resistive slow-down even at intermediate length scales. The results from
simulations are connected to mean field theory and its applications. Recent
work on helicity fluxes to alleviate large-scale dynamo quenching, shear
dynamos, nonlocal effects and magnetic structures from strong density
stratification are highlighted. Several insights which arise from analytic
considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue
"Magnetism in the Universe" (ed. A. Balogh
Cosmological Magnetic Fields from Primordial Helicity
Primordial magnetic fields may account for all or part of the fields observed
in galaxies. We consider the evolution of the magnetic fields created by
pseudoscalar effects in the early universe. Such processes can create
force-free fields of maximal helicity; we show that for such a field magnetic
energy inverse cascades to larger scales than it would have solely by flux
freezing and cosmic expansion. For fields generated at the electroweak phase
transition, we find that the predicted wavelength today can in principle be as
large as 10 kpc, and the field strength can be as large as 10^{-10} G.Comment: 13 page
- …