290 research outputs found

    An SU(3) model for octet baryon and meson fragmentation

    Get PDF
    The production of the octet of baryons and mesons in e^+ e^- collisions is analysed, based on considerations of SU(3) symmetry and a simple model for SU(3) symmetry breaking in fragmentation functions. All fragmentation functions, D_q^h(x, Q^2), describing the fragmentation of quarks into a member of the baryon octet (and similarly for fragmentation into members of the meson octet) are expressed in terms of three SU(3) symmetric functions, \alpha(x, Q^2), \beta(x, Q^2), and \gamma(x, Q^2). With the introduction of an SU(3) breaking parameter, \lambda, the model is successful in describing hadroproduction data at the Z pole. The fragmentation functions are then evolved using leading order evolution equations and good fits to currently available data at 34 GeV and at 161 GeV are obtained.Comment: 24 pages LaTeX file including 11 postscript figure file

    On the Particle Data Group evaluation of Psi' and chi_c Branching Ratios

    Get PDF
    I propose a new evaluation of ψâ€Č(2S)\psi'(2S) and χc(1P)\chi_c(1P) branching ratios which avoids the correlations affecting the current Particle Data Group evaluation. These correlations explain the apparent technique-dependent discrepancies between the available determinations of the B(χc(1P)→ppˉ){\cal B}(\chi_c(1P)\to p\bar p) and Γ(χc(1P)→γγ)\Gamma(\chi_c(1P)\to \gamma\gamma) under the hypotesis that the current values of the ψâ€Č(2S)→χc(1P)Îł\psi'(2S)\to\chi_c(1P)\gamma branching ratios are overestimated. In the process I also noticed that Particle Data Group has not restated many of the older measurements, when necessary, for the new value of B(J/ψ→l+l−){\cal B}(J/\psi\to l^+l^-), which significantly affects the evaluation of some relevant ψâ€Č(2S)\psi'(2S) and χc(1P)\chi_c(1P) exclusive branching ratios.Comment: 13 pages. Revised version. Submitted to Phys. Rev.

    Possible large phase in psi(2S) -> 1-0- Decays

    Full text link
    The strong and the electromagnetic amplitudes are analyzed on the basis of the measurements of J/psi, psi(2S) -> 1-0- in e+e- experiments. The currently available experimental information is revised with inclusion of the contribution from e+e- -> gamma * -> 1-0- . The study shows that a large phase around minus 90 degree between the strong and the electromagnetic amplitudes could not be ruled out by the experimental data for psi(2S).Comment: 4 page

    Electromagnetic form factors in the J/\psi mass region: The case in favor of additional resonances

    Get PDF
    Using the results of our recent analysis of e^+e^- annihilation, we plot the curves for the diagonal and transition form factors of light hadrons in the time-like region up to the production threshold of an open charm quantum number. The comparison with existing data on the decays of J/\psi into such hadrons shows that some new resonance structures may be present in the mass range between 2 GeVand the J/\psi mass. Searching them may help in a better understanding of the mass spectrum in both the simple and a more sophisticated quark models, and in revealing the details of the three-gluon mechanism of the OZI rule breaking in K\bar K channel.Comment: Formulas are added, typo is corrected, the text is rearranged. Replaced to match the version accepted in Phys Rev

    Hybrid configuration content of heavy S-wave mesons

    Full text link
    We use the non-relativistic expansion of QCD (NRQCD) on the lattice to study the lowest hybrid configuration contribution to the ground state of heavy S-wave mesons. Using lowest-order lattice NRQCD to create the heavy-quark propagators, we form a basis of ``unperturbed'' S-wave and hybrid states. We then apply the lowest-order coupling of the quark spin and chromomagnetic field at an intermediate time slice to create ``mixed'' correlators between the S-wave and hybrid states. From the resulting amplitudes, we extract the off-diagonal element of our two-state Hamiltonian. Diagonalizing this Hamiltonian gives us the admixture of hybrid configuration within the meson ground state. The present effort represents a continuation of previous work: the analysis has been extended to include lattices of varying spacings, source operators having better overlap with the ground states, and the pseudoscalar (along with the vector) channel. Results are presented for bottomonium (΄\Upsilon, ηb\eta_b^{}) using three different sets of quenched lattices. We also show results for charmonium (J/ψJ/\psi, ηc\eta_c^{}) from one lattice set, although we note that the non-relativistic approximation is not expected to be very good in this case.Comment: 9 pages, 7 figures, version to appear in Phys Rev

    Clocking hadronization in relativistic heavy ion collisions with balance functions

    Get PDF
    A novel state of matter has been hypothesized to exist during the early stage of relativistic heavy ion collisions, with normal hadrons not appearing until several fm/c after the start of the reaction. To test this hypothesis, correlations between charges and their associated anticharges are evaluated with the use of balance functions. It is shown that late-stage hadronization is characterized by tightly correlated charge/anticharge pairs when measured as a function of relative rapidity.Comment: 5 pages, 3 figure

    A Monte Carlo Study of the Dynamical-Flucautation Property of the Hadronic System Inside Jets

    Get PDF
    A study of the dynamical fluctuation property of jets is carried out using Monte Carlo method. The results suggest that, unlike the average properties of the hadronic system inside jets, the anisotropy of dynamical fluctuations in these systems changes abruptly with the variation of the cut parameter \yct. A transition point exists, where the dynamical fluctuations in the hadronic system inside jet behave like those in soft hadronic collisions, i.e. being circular in the transverse plan with repect to dynamical fluctuations. This finding obtained from Jetset and Herwig Monte Carlo is encouraged to be checked by experiments.Comment: 8 pages, 3 figure

    Quark-hadron-duality in the charmonium and upsilon system

    Get PDF
    In this work we discuss the practical and conceptual issues related to quark-hadron-duality in heavy-heavy systems. Recent measurements in the charmonium region allow a direct test of quark-hadron-duality. We present a formula for non-resonant background production in e^+ e^- \to D{\bar D} and extract the resonance parameters of the \psi(3S)-\psi(6S). The obtained results are used to investigate the upsilon energy range.Comment: 21 pages, 3 figures, references adde

    Pion and Kaon Production in e+e−e^+e^- and epep Collisions at Next-to-Leading Order

    Full text link
    We present new sets of fragmentation functions for charged pions and kaons, both at leading and next-to-leading order. They are fitted to data on inclusive charged-hadron production in e+e−e^+e^- annihilation taken by TPC at PEP (s=29\sqrt s=29~GeV) and to similar data by ALEPH at LEP, who discriminated between events with charm, bottom, and light- flavour fragmentation in their charged-hadron sample. We treat all partons independently and to properly incorporate the charm and bottom thresholds. Due to the sizeable energy gap between PEP and LEP, we are sensitive to the scaling violation in the fragmentation process, which allows us to extract a value for the asymptotic scale parameter of QCD, Λ\Lambda. Recent data on inclusive charged-hadron production in tagged three-jet events by OPAL and similar data for longitudinal electron polarization by ALEPH allow us to pin down the gluon fragmentation functions. Our new fragmentation functions lead to an excellent description of a multitude of other e+e−e^+e^- data on inclusive charged-hadron production, ranging from s=5.2\sqrt s=5.2~GeV to LEP energy. In addition, they agree nicely with the transverse-momentum spectra of single charged hadrons measured by H1 and ZEUS in photoproduction at the epep collider HERA, which represents a nontrivial check of the factorization theorem of the QCD-improved parton model.Comment: 22 pages, latex, 13 compressed ps figures in separate fil

    Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model

    Get PDF
    We develop and extend the dynamical string parton model. This model, which is based on the salient features of QCD, uses classical Nambu-Got\=o strings with the endpoints identified as partons, an invariant string breaking model of the hadronization process, and interactions described as quark-quark interactions. In this work, the original model is extended to include a phenomenological quantization of the mass of the strings, an analytical technique for treating the incident nucleons as a distribution of string configurations determined by the experimentally measured structure function, the inclusion of the gluonic content of the nucleon through the introduction of purely gluonic strings, and the use of a hard parton-parton interaction taken from perturbative QCD combined with a phenomenological soft interaction. The limited number of parameters in the model are adjusted to e+e−e^+e^- and pp --pp data. Utilizing these parameters, the first calculations of the model for pp --AA and AA--AA collisions are presented and found to be in reasonable agreement with a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex
    • 

    corecore