12,520 research outputs found
The decay and collisions of dark solitons in superfluid Fermi gases
We study soliton collisions and the decay of solitons into sound in
superfluid Fermi gases across the Bose-Einstein condensate to
Bardeen-Cooper-Schrieffer (BEC-BCS) crossover by performing numerical
simulations of the time-dependent Bogoliubov-de Gennes equations. This decay
process occurs when the solitons are accelerated to the bulk pair-breaking
speed by an external potential. A similar decay process may occur when solitons
are accelerated by an inelastic collision with another soliton. We find that
soliton collisions become increasingly inelastic as we move from the BEC to BCS
regimes, and the excess energy is converted into sound. We interpret this
effect as being due to evolution of Andreev bound states localized within the
soliton.Comment: 9 pages, 5 figure
1420 MHz Continuum Absorption Towards Extragalactic Sources in the Galactic Plane
We present a 21-cm emission-absorption study towards extragalactic sources in
the Canadian Galactic Plane Survey (CGPS). We have analyzed HI spectra towards
437 sources with S > 150 mJy, giving us a source density of 0.6 sources per
square degree at arcminute resolution. We present the results of a first
analysis of the HI temperatures, densities, and feature statistics. Particular
emphasis is placed on 5 features with observed spin temperatures below 40 K. We
find most spin temperatures in the range from 40 K to 300 K. A simple HI
two-component model constrains the bulk of the cold component to temperatures
(T_c) between 40 K and 100 K. T_c peaks in the Perseus arm region and clearly
drops off with Galactocentric radius, R, beyond that. The HI density follows
this trend, ranging from a local value of 0.4 cm^{-3} to less than 0.1 cm^{-3}
at R = 20 kpc. We find that HI emission alone on average traces about 75% of
the total HI column density, as compared to the total inferred by the emission
and absorption. Comparing the neutral hydrogen absorption to CO emission no
correlation is found in general, but all strong CO emission is accompanied by a
visible HI spectral feature. Finally, the number of spectral HI absorption
features per kpc drop off exponentially with increasing R.Comment: 13 pages, 13 figures, Accepted for March 2004 Ap
Is there something of the MCT in orientationally disordered crystals ?
Molecular Dynamics simulations have been performed on the orientationally
disordered crystal chloroadamantane: a model system where dynamics are almost
completely controlled by rotations. A critical temperature T_c = 225 K as
predicted by the Mode Coupling Theory can be clearly determined both in the
alpha and beta dynamical regimes. This investigation also shows the existence
of a second remarkable dynamical crossover at the temperature T_x > T_c
consistent with a previous NMR and MD study [1]. This allows us to confirm
clearly the existence of a 'landscape-influenced' regime occurring in the
temperature range [T_c-T_x] as recently proposed [2,3].Comment: 4 pages, 5 figures, REVTEX
The pre-ZAMS nature of Mol160/IRAS23385+6053 confirmed by Spitzer
Determining the timeline for the formation of massive YSOs requires the
identification and characterisation of all the phases that a massive forming
YSO undergoes. It is of particular interest to verify the observability of the
phase in which the object is rapidly accreting while not yet igniting the
fusion of hydrogen that marks the arrival on the ZAMS. One of the candidate
prototypical objects for this phase is Mol160/IRAS23385+6053, which previous
studies suggest it could be in a pre-Hot Core stage. We further investigate
this issue by means of Spitzer imaging and spectroscopy in the 5-70 micron
range. The dense core of Mol160/IRAS23385+6053, which up to now had only been
detected at submm and mm wavelenghts has been revealed for the first time at 24
and 70 micron by Spitzer. The complete 24 micron -3.4 mm continuum cannot be
fitted with a standard model of a Zero-Age Main-Sequence (ZAMS) star embedded
in an envelope. A simple greybody fit yields a mass of 220 solar masses. The
luminosity is slightly in excess of 3000 solar luminosities, which is a factor
of 5 less than previous estimates when only IRAS fluxes were available between
20 and 100 micron. The source is under-luminous by the same factor with respect
to UCHII regions or Hot-Cores of similar circumstellar mass, and simple models
show that this is compatible with an earlier evolutionary stage. Spectroscopy
between 5 and 40 microns revelas typical PDR/PIR conditions, where the required
UV illumination may be provided by other sources revealed at 24 microns in the
same region, and which can be plausibly modeled as moderately embedded
intermediate-mass ZAMS stars. Our results strengthen the suggestion that the
central core in Mol160/IRAS23385+6053 is a massive YSO actively accreting from
its circumstellar envelope and which did not yet begin hydrogen fusion.Comment: Accepted by A&
Physical properties of high-mass clumps in different stages of evolution
(Abridged) Aims. To investigate the first stages of the process of high-mass
star formation, we selected a sample of massive clumps previously observed with
the SEST at 1.2 mm and with the ATNF ATCA at 1.3 cm. We want to characterize
the physical conditions in such sources, and test whether their properties
depend on the evolutionary stage of the clump.
Methods. With ATCA we observed the selected sources in the NH3(1,1) and (2,2)
transitions and in the 22 GHz H2O maser line. Ammonia lines are a good
temperature probe that allow us to accurately determine the mass and the
column-, volume-, and surface densities of the clumps. We also collected all
data available to construct the spectral energy distribution of the individual
clumps and to determine if star formation is already occurring, through
observations of its most common signposts, thus putting constraints on the
evolutionary stage of the source. We fitted the spectral energy distribution
between 1.2 mm and 70 microns with a modified black body to derive the dust
temperature and independently determine the mass.
Results. The clumps are cold (T~10-30 K), massive (M~10^2-10^3 Mo), and dense
(n(H2)>~10^5 cm^-3) and they have high column densities (N(H2)~10^23 cm^-2).
All clumps appear to be potentially able to form high-mass stars. The most
massive clumps appear to be gravitationally unstable, if the only sources of
support against collapse are turbulence and thermal pressure, which possibly
indicates that the magnetic field is important in stabilizing them.
Conclusions. After investigating how the average properties depend on the
evolutionary phase of the source, we find that the temperature and central
density progressively increase with time. Sources likely hosting a ZAMS star
show a steeper radial dependence of the volume density and tend to be more
compact than starless clumps.Comment: Published in A&A, Vol. 556, A1
Different evolutionary stages in massive star formation. Centimeter continuum and H2O maser emission with ATCA
We present ATCA observations of the H2O maser line and radio continuum at
18.0GHz and 22.8GHz, toward a sample of 192 massive star forming regions
containing several clumps already imaged at 1.2mm. The main aim of this study
is to investigate the water maser and centimeter continuum emission (likely
tracing thermal free-free emission) in sources at different evolutionary
stages, using the evolutionary classifications proposed by Palla et al (1991)
and Molinari et al (2008). We used the recently comissioned CABB backend at
ATCA obtaining images with 20arcsec resolution in the 1.3cm continuum and H2O
maser emission, in all targets. For the evolutionary analysis of the sources we
used the millimeter continuum emission from Beltran et al (2006) and the
infrared emission from the MSX Point Source Catalogue. We detect centimeter
continuum emission in 88% of the observed fields with a typical rms noise level
of 0.45mJy/beam. Most of the fields show a single radio continuum source, while
in 20% of them we identify multiple components. A total of 214 centimeter
continuum sources have been identified, likely tracing optically thin HII
regions, with physical parameters typical of both extended and compact HII
regions. Water maser emission was detected in 41% of the regions, resulting in
a total of 85 distinct components. The low angular (20arcsec) and spectral
(14km/s) resolutions do not allow a proper analysis of the water maser
emission, but suffice to investigate its association with the continuum
sources. We have also studied the detection rate of HII regions in the two
types of IRAS sources defined by Palla et (1991) on the basis of the IRAS
colours: High and Low. No significant differences are found, with large
detection rates (>90%) for both High and Low sources. We classify the
millimeter and infrared sources in our fields in three evolutionary stages
following the scheme presented by ...Comment: 102 pages, 19 figures, 10 tables, accepted for publication in
Astronomy & Astrophysic
Star Formation in the Extreme Outer Galaxy: Digel Cloud 2 Clusters
As a first step for studying star formation in the extreme outer Galaxy
(EOG), we obtained deep near-infrared images of two embedded clusters at the
northern and southern CO peaks of Cloud 2, which is one of the most distant
star forming regions in the outer Galaxy (galactic radius R_g ~ 19 kpc). With
high spatial resolution (FWHM ~ 0".35) and deep imaging (K ~ 21 mag) with the
IRCS imager at the Subaru telescope, we detected cluster members with a mass
detection limit of < 0.1 M_{sun}, which is well into the substellar regime.
These high quality data enables a comparison of EOG to those in the solar
neighborhood on the same basis for the first time. Before interpreting the
photometric result, we have first constructed the NIR color-color diagram
(dwarf star track, classical T Tauri star (CTTS) locus, reddening law) in the
Mauna Kea Observatory filter system and also for the low metallicity
environment since the metallicity in EOG is much lower than those in the solar
neighborhood. The estimated stellar density suggests that an ``isolated type''
star formation is ongoing in Cloud 2-N, while a ``cluster type'' star formation
is ongoing in Cloud 2-S. Despite the difference of the star formation mode,
other characteristics of the two clusters are found to be almost identical: (1)
K-band luminosity function (KLF) of the two clusters are quite similar, as is
the estimated IMF and ages (~ 0.5--1 Myr) from the KLF fitting, (2) the
estimated star formation efficiencies (SFEs) for both clusters are typical
compared to those of embedded clusters in the solar neighborhood (~ 10 %). The
similarity of two independent clusters with a large separation (~ 25 pc)
strongly suggest that their star formation activities were triggered by the
same mechanism, probably the supernova remnant (GSH 138-01-94).Comment: 14pages, 11 figures; Accepted for publication in Ap
Signatures of inflow motion in cores of massive star formation: Potential collapse candidates
Using the IRAM 30 m telescope, a mapping survey in optically thick and thin
lines was performed towards 46 high mass star-forming regions. The sample
includes UC H{\sc ii} precursors and UC H{\sc ii} regions. Seventeen sources
are found to show "blue profiles", the expected signature of collapsing cores.
The excess of sources with blue over red profiles ([ -- ]/) is 29% in the HCO =1--0 line, with a probability
of 0.6% that this is caused by random fluctuations. UC H{\sc ii} regions show a
higher excess (58%) than UC H{\sc ii} precursors (17%), indicating that
material is still accreted after the onset of the UC H{\sc ii} phase. Similar
differences in the excess of blue profiles as a function of evolutionary state
are not observed in low mass star-forming regions. Thus, if confirmed for high
mass star-forming sites, this would point at a fundamental difference between
low- and high-mass star formation. Possible explanations are inadequate
thermalization, stronger influence of outflows in massive early cores, larger
gas reserves around massive stellar objects or different trigger mechanisms
between low- and high- mass star formation
High-Redshift Dust Obscured Galaxies: A Morphology-Spectral Energy Distribution Connection Revealed by Keck Adaptive Optics
A simple optical to mid-IR color selection, R – [24]>14, i.e., f_ν(24 μm)/f_ν(R) ≳ 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z ~ 2 ± 0.5. Extreme mid-IR luminosities (L_(IR) > 10^(12-14)) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0."05-0."1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of ~1 kpc, circumstantial evidence for ongoing mergers
- …