2,186 research outputs found

    On the role of uncoupling protein-2 in pancreatic beta cells

    Get PDF
    AbstractPancreatic beta cells secrete insulin when blood glucose levels are high. Dysfunction of this glucose-stimulated insulin secretion (GSIS) is partly responsible for the manifestation of type 2 diabetes, a metabolic disorder that is rapidly becoming a global pandemic. Mitochondria play a central role in GSIS by coupling glucose oxidation to production of ATP, a signal that triggers a series of events that ultimately leads to insulin release. Beta cells express a mitochondrial uncoupling protein, UCP2, which is rather surprising as activity of such a protein is anticipated to lower the efficiency of oxidative phosphorylation, and hence to impair GSIS. The mounting evidence demonstrating that insulin secretion is indeed blunted by UCP2 agrees with this prediction, and has provoked the idea that UCP2 activity contributes to beta cell pathogenesis and development of type 2 diabetes. Although this notion may be correct, the evolved function of UCP2 remains unclear. With this paper we aim to provide a brief account of the present state of affairs in this field, suggest a physiological role for UCP2, and highlight some of our own recent results

    Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3

    Get PDF
    Evidence for the physiological functions of UCP2 and UCP3 is critically reviewed. They do not mediate adaptive thermogenesis, but they may be significantly thermogenic under specific pharmacological conditions. There is strong evidence that the mild regulated uncoupling they cause attenuates mitochondrial ROS production, protects against cellular damage, and diminishes insulin secretion. Evidence that they export fatty acids physiologically is weak. UCP2 and UCP3 are important potential targets for treatment of aging, degenerative diseases, diabetes, and perhaps obesity

    Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria

    Get PDF
    AbstractUncoupling protein 3 (UCP3) is implicated in mild uncoupling and the regulation of mitochondrial ROS production. We previously showed that UCP3 turns over rapidly in C2C12 myoblasts, with a half-life of 0.5–4h, and that turnover can be reconstituted in vitro. We show here that rapid degradation of UCP3 in vitro in isolated brown adipose tissue mitochondria required the 26S proteasome, ubiquitin, ATP, succinate to generate a high membrane potential, and a pH of 7.4 or less. Ubiquitin containing lysine-48 was both necessary and sufficient to support UCP3 degradation, implying a requirement for polyubiquitylation at this residue. The 20S proteasome did not support degradation. UCP3 degradation was prevented by simultaneously blocking matrix ATP generation and import, showing that ATP in the mitochondrial matrix was required. Degradation did not appear to require a transmembrane pH gradient, but was very sensitive to membrane potential: degradation was halved when membrane potential decreased 10–20mV from its resting value, and was not significant below about 120mV. We propose that matrix ATP and a high membrane potential are needed for UCP3 to be polyubiquitylated through lysine-48 of ubiquitin and exported to the cytosolic 26S proteasome, where it is de-ubiquitylated and degraded

    Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential

    Get PDF
    Mild uncoupling of oxidative phosphorylation, caused by a leak of protons back into the matrix, limits mitochondrial production of ROS (reactive oxygen species). This proton leak can be induced by the lipid peroxidation products of ROS, such as HNE (4-hydroxynonenal). HNE activates uncoupling proteins (UCP1, UCP2 and UCP3) and ANT (adenine nucleotide translocase), thereby providing a negative feedback loop. The mechanism of activation and the conditions necessary to induce uncoupling by HNE are unclear. We have found that activation of proton leak by HNE in rat and mouse skeletal muscle mitochondria is dependent on incubation with respiratory substrate. In the presence of HNE, mitochondria energized with succinate became progressively more leaky to protons over time compared with mitochondria in the absence of either HNE or succinate. Energized mitochondria must attain a high membrane potential to allow HNE to activate uncoupling: a drop of 10–20 mV from the resting value is sufficient to blunt induction of proton leak by HNE. Uncoupling occurs through UCP3 (11%), ANT (64%) and other pathways (25%). Our findings have shown that exogenous HNE only activates uncoupling at high membrane potential. These results suggest that both endogenous HNE production and high membrane potential are required before mild uncoupling will be triggered to attenuate mitochondrial ROS production

    Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia?

    Get PDF
    AbstractWe investigated the effects of ischemia on the kinetics and control of mitochondria isolated from normal and ischemic heart. The dependence of the respiratory chain, phosphorylation system and proton leak on the mitochondrial membrane potential were measured in mitochondria from hearts after 0, 30 min and 45 min of in vitro ischemia. Data showed that during the development of ischemia from the reversible (30 min) to the irreversible (45 min) phase, a progressive decrease in activity of the respiratory chain occurs. At the same time an increase in proton leak across the mitochondrial inner membrane was observed. Phosphorylation is inhibited but seems to be less affected by ischemia than respiratory chain or proton leak. Control coefficients of the 3 blocks of reactions over respiration rate were determined in different respiratory states between state 4 and state 3. Ischemia caused the control exerted by the proton leak to increase in state 3 and the intermediate state and caused the control by the phosphorylation system to decrease in the intermediate state. Taken together, these results indicate that the main effects of ischemia on mitochondrial respiration are an inhibition of the respiratory chain and an increase of the proton leak

    Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport

    Get PDF
    AbstractWe investigated the effects of diphenyleneiodonium (DPI) on superoxide production by complex I in mitochondria isolated from rat skeletal muscle. Superoxide production was measured indirectly as hydrogen peroxide production. In a conventional medium containing chloride, DPI strongly inhibited superoxide production by complex I driven by reverse electron transport from succinate. In principle, this inhibition could be explained by an observed decrease in the mitochondrial pH gradient caused by the known chloride–hydroxide antiport activity of DPI. In a medium containing gluconate instead of chloride, DPI did not affect the pH gradient. In this gluconate medium, DPI still inhibited superoxide production driven by reverse electron transport, showing that the inhibition of superoxide production was not dependent on changes in the pH gradient. It had no effect on superoxide production during forward electron transport from NAD-linked substrates in the presence of rotenone (to maximise superoxide production from the flavin of complex I) or antimycin (to maximise superoxide production from complex III), suggesting that the effects of DPI were not through inhibition of the flavin. We conclude that DPI has the novel and potentially very useful ability to prevent superoxide production from the site in complex I that is active during reverse electron transport, without affecting superoxide production during forward electron transport

    Convective Nonlinearity in Non-Newtonian Fluids

    Full text link
    In the limit of infinite yield time for stresses, the hydrodynamic equations for viscoelastic, Non-Newtonian liquids such as polymer melts must reduce to that for solids. This piece of information suffices to uniquely determine the nonlinear convective derivative, an ongoing point of contention in the rheology literature.Comment: 4 page
    corecore