142 research outputs found
Characterizing the nonlocal correlations of particles that never interacted
Quantum systems that have never interacted can become nonlocally correlated
through a process called entanglement swapping. To characterize nonlocality in
this context, we introduce local models where quantum systems that are
initially uncorrelated are described by uncorrelated local variables. While a
pair of maximally entangled qubits prepared in the usual way (i.e., emitted
from a common source) requires a visibility close to 70% to violate a Bell
inequality, we show that an entangled pair generated through entanglement
swapping will already violate a Bell inequality for visibilities as low as 50%
under our assumption.Comment: 5 pages, 2 figure
Indefinite Causal Order in a Quantum Switch
In quantum mechanics events can happen in no definite causal order: in
practice this can be verified by measuring a causal witness, in the same way
that an entanglement witness verifies entanglement. Indefinite causal order can
be observed in a quantum switch, where two operations act in a quantum
superposition of the two possible orders. Here we realise a photonic quantum
switch, where polarisation coherently controls the order of two operations,
and , on the transverse spatial mode of the photons. Our
setup avoids the limitations of earlier implementations: the operations cannot
be distinguished by spatial or temporal position. We show that our quantum
switch has no definite causal order, by constructing a causal witness and
measuring its value to be 18 standard deviations beyond the definite-order
bound
Testing Leggett's Inequality Using Aharonov-Casher Effect
Bell's inequality is established based on local realism. The violation of
Bell's inequality by quantum mechanics implies either locality or realism or
both are untenable. Leggett's inequality is derived based on nonlocal realism.
The violation of Leggett's inequality implies that quantum mechanics is neither
local realistic nor nonlocal realistic. The incompatibility of nonlocal realism
and quantum mechanics has been urrently confirmed by photon experiments. In our
work, we propose to test Leggett's inequality using the Aharonov-Casher effect.
In our scheme, four entangled particles emitted from two sources manifest a
two-qubit-typed correlation that may result in the violation of the Leggett
inequality, while satisfying the no-signaling condition for spacelike
separation. Our scheme is tolerant to some local inaccuracies due to the
topological nature of the Aharonov-Casher phase. The experimental
implementation of our scheme can be possibly realized by a calcium atomic
polarization interferometer experiment.Comment: 7 pages, 2 figures. Accepted by Scientific Report
Witnessing causal nonseparability
Our common understanding of the physical world deeply relies on the notion
that events are ordered with respect to some time parameter, with past events
serving as causes for future ones. Nonetheless, it was recently found that it
is possible to formulate quantum mechanics without any reference to a global
time or causal structure. The resulting framework includes new kinds of quantum
resources that allow performing tasks - in particular, the violation of causal
inequalities - which are impossible for events ordered according to a global
causal order. However, no physical implementation of such resources is known.
Here we show that a recently demonstrated resource for quantum computation -
the quantum switch - is a genuine example of "indefinite causal order". We do
this by introducing a new tool - the causal witness - which can detect the
causal nonseparability of any quantum resource that is incompatible with a
definite causal order. We show however that the quantum switch does not violate
any causal nequality.Comment: 15 + 12 pages, 5 figures. Published versio
Security of two quantum cryptography protocols using the same four qubit states
The first quantum cryptography protocol, proposed by Bennett and Brassard in
1984 (BB84), has been widely studied in the last years. This protocol uses four
states (more precisely, two complementary bases) for the encoding of the
classical bit. Recently, it has been noticed that by using the same four
states, but a different encoding of information, one can define a new protocol
which is more robust in practical implementations, specifically when attenuated
laser pulses are used instead of single-photon sources [V. Scarani et al.,
Phys. Rev. Lett. {\bf 92}, 057901 (2004); referred to as SARG04]. We present a
detailed study of SARG04 in two different regimes. In the first part, we
consider an implementation with a single-photon source: we derive bounds on the
error rate for security against all possible attacks by the eavesdropper.
The lower and the upper bound obtained for SARG04 ( and
respectively) are close to those obtained for BB84 ( and respectively). In the second part, we consider the
realistic source consisting of an attenuated laser and improve on previous
analysis by allowing Alice to optimize the mean number of photons as a function
of the distance. SARG04 is found to perform better than BB84, both in secret
key rate and in maximal achievable distance, for a wide class of Eve's attacks.Comment: 19 pages, 7 figures, published versio
Experimental test of nonlocal realistic theories without the rotational symmetry assumption
We analyze the class of nonlocal realistic theories that was originally
considered by Leggett [Found. Phys. 33, 1469 (2003)] and tested by us in a
recent experiment [Nature (London) 446, 871 (2007)]. We derive an
incompatibility theorem that works for finite numbers of polarizer settings and
that does not require the previously assumed rotational symmetry of the
two-particle correlation functions. The experimentally measured case involves
seven different measurement settings. Using polarization-entangled photon
pairs, we exclude this broader class of nonlocal realistic models by
experimentally violating a new Leggett-type inequality by 80 standard
deviations.Comment: Published versio
No extension of quantum theory can have improved predictive power
According to quantum theory, measurements generate random outcomes, in stark
contrast with classical mechanics. This raises the question of whether there
could exist an extension of the theory which removes this indeterminism, as
suspected by Einstein, Podolsky and Rosen (EPR). Although this has been shown
to be impossible, existing results do not imply that the current theory is
maximally informative. Here we ask the more general question of whether any
improved predictions can be achieved by any extension of quantum theory. Under
the assumption that measurements can be chosen freely, we answer this question
in the negative: no extension of quantum theory can give more information about
the outcomes of future measurements than quantum theory itself. Our result has
significance for the foundations of quantum mechanics, as well as applications
to tasks that exploit the inherent randomness in quantum theory, such as
quantum cryptography.Comment: 6 pages plus 7 of supplementary material, 3 figures. Title changed.
Added discussion on Bell's notion of locality. FAQ answered at
http://perimeterinstitute.ca/personal/rcolbeck/FAQ.htm
Security of distributed-phase-reference quantum key distribution
Distributed-phase-reference quantum key distribution stands out for its easy
implementation with present day technology. Since many years, a full security
proof of these schemes in a realistic setting has been elusive. For the first
time, we solve this long standing problem and present a generic method to prove
the security of such protocols against general attacks. To illustrate our
result we provide lower bounds on the key generation rate of a variant of the
coherent-one-way quantum key distribution protocol. In contrast to standard
predictions, it appears to scale quadratically with the system transmittance.Comment: 4 pages + appendix, 4 figure
High rate, long-distance quantum key distribution over 250km of ultra low loss fibres
We present a fully automated quantum key distribution prototype running at
625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise
superconducting detectors, we can distribute 6,000 secret bits per second over
100 km and 15 bits per second over 250km
- …