2,637 research outputs found

    Hydrogen in Type Ic Supernovae?

    Full text link
    By definition, a Type Ic supernova (SN Ic) does not have conspicuous lines of hydrogen or helium in its optical spectrum. SNe Ic usually are modelled in terms of the gravitational collapse of bare carbon-oxygen cores. We consider the possibility that the spectra of ordinary (SN 1994I-like) SNe Ic have been misinterpreted, and that SNe Ic eject hydrogen. An absorption feature usually attributed to a blend of Si II 6355 and C II 6580 may be produced by H-alpha. If SN 1994I-like SNe Ic eject hydrogen, the possibility that hypernova (SN 1998bw-like) SNe Ic, some of which are associated with gamma-ray bursts, also eject hydrogen should be considered. The implications of hydrogen for SN Ic progenitors and explosion models are briefly discussed.Comment: Accepted by PASP. Several significant changes including one additional figur

    Preliminary Spectral Analysis of SN 1994I

    Full text link
    We present optical spectra of the Type Ic supernova 1994I in M51 and preliminary non-LTE analysis of the spectra. Our models are not inconsistent with the explosions of C+O cores of massive stars. While we find no direct evidence for helium in the optical spectra, our models cannot rule out small amounts of helium. More than 0.1~\msol\ of helium seems unlikely.Comment: LaTeX, MN style, psfig, and natbib substyles, 7 pages, 4 figures, to appear in MNRAS. Postscript file available from http://www.nhn.uoknor.edu/~baro

    Spectral Consequences of Deviation from Spherical Composition Symmetry in Type Ia Supernovae

    Full text link
    We investigate the prospects for constraining the maximum scale of clumping in composition that is consistent with observed Type Ia supernova flux spectra. Synthetic spectra generated without purely spherical composition symmetry indicate that gross asymmetries make prominent changes to absorption features. Motivated by this, we consider the case of a single unblended line forming in an atmosphere with perturbations of different scales and spatial distributions. Perturbations of about 1% of the area of the photodisk simply weaken the absorption feature by the same amount independent of the line of sight. Conversely, perturbations of about 10% of the area of the photodisk introduce variation in the absorption depth which does depend on the line of sight. Thus, 1% photodisk area perturbations may be consistent with observed profile homogeneity but 10% photodisk area perturbations can not. Based on this, we suggest that the absence of significant variation in the depths of Si II 6355 absorption features in normal Type Ia spectra near maximum light indicates that any composition perturbations in these events are quite small. This also constrains future three-dimensional explosion models to produce ejecta profiles with only small scale inhomogeneities.Comment: 11 pages, 6 figure

    Supernova Resonance--scattering Line Profiles in the Absence of a Photosphere

    Get PDF
    In supernova spectroscopy relatively little attention has been given to the properties of optically thick spectral lines in epochs following the photosphere's recession. Most treatments and analyses of post-photospheric optical spectra of supernovae assume that forbidden-line emission comprises most if not all spectral features. However, evidence exists which suggests that some spectra exhibit line profiles formed via optically thick resonance-scattering even months or years after the supernova explosion. To explore this possibility we present a geometrical approach to supernova spectrum formation based on the "Elementary Supernova" model, wherein we investigate the characteristics of resonance-scattering in optically thick lines while replacing the photosphere with a transparent central core emitting non-blackbody continuum radiation, akin to the optical continuum provided by decaying 56Co formed during the explosion. We develop the mathematical framework necessary for solving the radiative transfer equation under these conditions, and calculate spectra for both isolated and blended lines. Our comparisons with analogous results from the Elementary Supernova code SYNOW reveal several marked differences in line formation. Most notably, resonance lines in these conditions form P Cygni-like profiles, but the emission peaks and absorption troughs shift redward and blueward, respectively, from the line's rest wavelength by a significant amount, despite the spherically symmetric distribution of the line optical depth in the ejecta. These properties and others that we find in this work could lead to misidentification of lines or misattribution of properties of line-forming material at post-photospheric times in supernova optical spectra.Comment: 37 pages, 24 figures; accepted for publication in ApJ Supplement Serie

    Committed to Oprah, Homer, or House: Using the Investment Model to Understand Parasocial Relationships

    Get PDF
    People can develop close relationships with media figures viewed on TV. Across two studies we examined the extent to which satisfaction with, alternatives to, and investments in such parasocial relationships (PSR) account for feelings of commitment toward favored TV characters. In Study 1, satisfaction and investments positively predicted commitment to fictional TV characters, whereas the alternative of not following any TV character negatively predicted commitment to the PSR. In Study 2, we tested the bases of the investment model as predictors of commitment to fictional (e.g., Homer Simpson) versus nonfictional (e.g., Oprah Winfrey) TV characters. As in Study 1, for both fictional and nonfictional characters, commitment level was significantly predicted by levels of satisfaction and investments. However, the alternative of not following any character was significantly associated with commitment only for fictional characters. Results support the use of the investment model to understand processes underlying PSRs

    Reading the Spectra of the Most Peculiar Type Ia Supernova 2002cx

    Full text link
    In spite of the apparent lack of Si II and S II features in its spectra, SN 2002cx was classified as a peculiar Type Ia supernova (SN Ia) on the basis of its overall photometric and spectroscopic behavior. Spectra obtained near maximum light contained Fe III features, as in SN 1991T-like events, but the blueshifts of the Fe III absorptions were exceptionally low. The luminosity also was low. We use the supernova synthetic--spectrum code SYNOW to study line identifications in SN 2002cx. We find that the maximum-light spectra appear to contain weak features of Si II, S II, Si III, and Ca II, which strengthens the connection with SN 1991T-like events. We show that later spectra, obtained 12, 25, and 56 days after maximum, consist of P-Cygni resonance-scattering features due to permitted Fe II and Co II lines. SN 2002cx had been thought to have made the transition from a permitted-line to a forbidden-line spectrum between 25 and 56 days. Owing to the low expansion velocities the postmaximum spectral features are narrower and easier to identify than they are in other SNe Ia. SN 2002cx will lead to improved line identifications in other SNe Ia and clarify when the transition from a permitted-line to a forbidden-line spectrum occurs. In the context of current SN Ia explosion models, we suggest that the properties of SN 2002cx may be consistent with 3D deflagration models, which are not favored for normal SNe Ia.Comment: 21 pages including 7 figures and 4 tables; accepted by PAS

    SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology

    Get PDF
    HET Optical spectra covering the evolution from about 6 days before to about 5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the "Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and narrow SiII lines, and for a period of at least 10 days beginning around maximum light these profiles do not change in width or depth and they indicate a constant expansion velocity of ~10,600 km/s. We analyzed the observations based on detailed radiation dynamical models in the literature. Whereas delayed detonation and deflagration models have been used to explain the majority of SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an unvarying line profile. Pulsating delayed detonations and merger scenarios form shell-like density structures with properties mostly related to the mass of the shell, M_shell, and we discuss how these models may explain the observed SiII line evolution; however, these models are based on spherical calculations and other possibilities may exist. SN 2005hj is consistent with respect to the onset, duration, and velocity of the plateau, the peak luminosity and, within the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun. Our analysis suggests a distinct class of events hidden within the Branch-normal SNe Ia. If the predicted relations between observables are confirmed, they may provide a way to separate these two groups. We discuss the implications of two distinct progenitor classes on cosmological studies employing SNe Ia, including possible differences in the peak luminosity to light curve width relation.Comment: ApJ accepted, 31 page
    • …
    corecore