77 research outputs found

    Improving efficiency in meat production

    Get PDF
    Selective breeding and improved nutritional management over the past 20–30 years has resulted in dramatic improvements in growth efficiency for pigs and poultry, particularly lean tissue growth. However, this has been achieved using high-quality feed ingredients, such as wheat and soya that are also used for human consumption and more recently biofuels production. Ruminants on the other hand are less efficient, but are normally fed poorer quality ingredients that cannot be digested by human subjects, such as grass or silage. The challenges therefore are to: (i) maintain the current efficiency of growth of pigs and poultry, but using more ingredients not needed to feed the increasing human population or for the production of biofuels; (ii) improve the efficiency of growth in ruminants; (iii) at the same time produce animal products (meat, milk and eggs) of equal or improved quality. This review will describe the use of: (a) enzyme additives for animal feeds, to improve feed digestibility;(b) known growth promoting agents, such as growth hormone, β-agonists and anabolic steroids, currently banned in the European Union but used in other parts of the world; (c) recent transcriptomic studies into molecular mechanisms for improved growth efficiency via low residual feed intake. In doing so, the use of genetic manipulation in animals will also be discussed

    Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle

    Get PDF
    Growth hormone (GH) and β agonists increase muscle mass, but the mechanisms for this response are unclear and the magnitude of response is thought to vary with age of animal. To investigate the mechanisms driving the muscle response to these agents, we examined the effects of short-term (6 day) administration of GH or cimaterol (a β2-adrenergic agonist, BA) on skeletal muscle phenotype in both young (day 60) and mature (day 120) lambs. Expression of myosin heavy chain (MyHC) isoforms were measured in Longissimus dorsi (LD), Semitendinosus (ST) and Supraspinatus (SS) muscles as markers of fibre type and metabolic enzyme activities were measured in LD. To investigate potential mechanisms regulating the changes in fibre type/metabolism, expression or activity of a number of signalling molecules were examined in LD. There were no effects of GH administration on MyHC isoform expression at either the mRNA or protein level in any of the muscles. However, BA treatment induced a proportional change in MyHC mRNA expression at both ages, with the %MyHCI and/or IIA mRNA being significantly decreased in all three muscles and % MyHCIIX/IIB mRNA significantly increased in the LD and ST. BA treatment induced de novo expression of MyHCIIB mRNA in LD, the fastest isoform not normally expressed in sheep LD, as well as increasing expression in the other two muscles. In the LD, the increased expression of the fastest MyHC isoforms (IIX and IIB) was associated with a decrease in isocitrate dehydrogenase activity, but no change in lactate dehydrogenase activity, indicating a reduced capacity for oxidative metabolism. In both young and mature lambs, changes in expression of metabolic regulatory factors were observed that might induce these changes in muscle metabolism/fibre type. In particular, BA treatment decreased PPAR-γ coactivator-1β mRNA and increased receptor-interacting protein 140 mRNA. The results suggest that the two agents work via different mechanisms or over different timescales, with only BA inducing changes in muscle mass and transitions to a faster, less oxidative fibre type after a 6-day treatment

    Gene expression of inflammatory markers in adipose tissue between obese women with polycystic ovary and normal obese women

    Get PDF
    OBJECTIVE: The pathogenesis of polycystic ovary syndrome (PCOS), a common endocrine disease and metabolic disturbance, is still unknown. The aim of the study was to investigate whether patients with PCOS display increased expression of inflammatory markers in adipose tissue. PATIENTS AND METHODS: Two groups of women were investigated, those diagnosed with PCOS (n = 8) and age and BMI-matched normal women (n = 12). Their age was between 20-45 years and all subjects were apparently healthy and did not take any medications. Adipose tissue levels of mRNA of inflammatory markers were determined by use of real-time PCR. RESULTS: There were no differences between obese patients and obese PCOS in levels of adipocytokines. CONCLUSIONS: There were no effects of PCOS on the expression of any of the adipocytokines genes measured in subcutaneous adipose tissue

    Active vitamin D increases myogenic differentiation in C2C12 cells via a vitamin D response element on the myogenin promoter

    Get PDF
    Background Skeletal muscle development during embryogenesis depends on proliferation of myoblasts followed by differentiation into myotubes/ multinucleated myofibers. Vitamin D (VD) has been shown to affect these processes, but there is conflicting evidence within the current literature on the exact nature of these effects due to a lack of time course data. With 20-40% of pregnant women worldwide being VD deficient, it is crucial that a clearer understanding of the impact of VD on myogenesis is gained.Methods A detailed 8-day differentiation time course was used where C2C12 cells were differentiated in control media (2% horse serum or 0.1% ethanol) or with different concentrations of active VD, 1,25(OH)2D3 (10-13M, 10-11M, 10-9M or 10-7M), and measurements were taken at 6 time points. DNA, creatine kinase and protein assays were carried out as well as quantitative PCR to determine expression of Myf5, MyoD, myogenin, MHC I, MHC neonatal, MHC embryonic, MHC IIa, MHC IIx and MHC IIb mRNAs. Transfections were carried out using one vector containing the myogenin promoter and another containing the same promoter with a 3 base mutation within a putative vitamin D response element (VDRE) to determine effects of 1,25(OH)2D3 on myogenin transcription. Finally, a ChIP assay was performed to determine whether the VD receptor (VDR) binds to the putative VDRE.Results 1,25(OH)2D3 caused an inhibition of proliferation and an increase in differentiation in C2C12 cells. Myf5, myogenin, MHC I, MHC neonatal, MHC embryonic, MHC IIa, MHC IIx and MHC IIb expression were all increased by 1,25(OH)2D3. Myotube size was also increased by VD. When the putative VDRE on the myogenin promoter was mutated, the increase in expression by VD was lost. ChIP analysis revealed that the VDR does bind to the putative VDRE on the myogenin promoter.Conclusions Active VD directly increases myogenin transcription via a functional VDRE on the myogenin promoter, resulting in increased myogenic differentiation, increased expression of both the early and late MHC isoforms, and also increased myotube size. These results highlight the importance of VD status during pregnancy for normal myogenesis to occur, but further in vivo work is needed

    Neuroendocrine role for VGF

    Get PDF
    The vgf gene (non-acronymic) is highly conserved and was identified on the basis of its rapid induction in vitro by nerve growth factor, although can also be induced by brain derived neurotrophic factor, and glial derived growth factor. The VGF gene gives rise to a 68kDa precursor polypeptide which is induced robustly, relatively selectively and is synthesized exclusively in neuronal and neuroendocrine cells. Post-translational processing by neuroendocrine specific pro-hormone convertases in these cells results in the production of a number of smaller peptides. The VGF gene and peptides are widely expressed throughout the brain, particularly the hypothalamus and hippocampus, and in peripheral tissues including the pituitary gland, the adrenal glands and the pancreas, and in the gastrointestinal tract in both the myenteric plexus and in endocrine cells. VGF peptides have been associated with a number of neuroendocrine roles and in this mini-review we aim to describe these roles to highlight the importance of VGF as therapeutic target for a number of disorders, particularly those associated with energy metabolism, pain, reproduction and cognition

    Leucine and mTORc1 act independently to regulate 2-deoxyglucose uptake in L6 myotubes

    Get PDF
    © 2020, The Author(s). Chronic mTORc1 hyperactivation via obesity-induced hyperleucinaemia has been implicated in the development of insulin resistance, yet the direct impact of leucine on insulin-stimulated glucose uptake in muscle cells remains unclear. To address this, differentiated L6 myotubes were subjected to various compounds designed to either inhibit mTORc1 activity (rapamycin), blunt leucine intracellular import (BCH), or activate mTORc1 signalling (3BDO), prior to the determination of the uptake of the glucose analogue, 2-deoxyglucose (2-DG), in response to 1mM insulin. In separate experiments, L6 myotubes were subject to various media concentrations of leucine (0–0.8mM) for 24h before 2-DG uptake in response to insulin was assessed. Both rapamycin and BCH blunted 2-DG uptake, irrespective of insulin administration, and this occurred in parallel with a decline in mTOR, 4E-BP1, and p70S6K phosphorylation status, but little effect on AKT phosphorylation. In contrast, reducing leucine media concentrations suppressed 2-DG uptake, both under insulin- and non-insulin-stimulated conditions, but did not alter the phosphorylation state of AKT-mTORc1 components examined. Unexpectedly, 3BDO failed to stimulate mTORc1 signalling, but, nonetheless, caused a significant increase in 2-DG uptake under non-insulin-stimulated conditions. Both leucine and mTORc1 influence glucose uptake in muscle cells independent of insulin administration, and this likely occurs via distinct but overlapping mechanisms

    Thyroid hormone and vitamin D regulate VGF expression and promoter activity

    Get PDF
    The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VG expression (P!0.05) and VGF promoter activity (P!0.0001). Similarly, treatment with 1,25-ihydroxyvitamin D3 increased endogenous VGF mRNA expression (P!0.05) and VGF promoter activity (P!0.0001),whereas triiodothyronine (T3) decreased both (P!0.01 and P!0.0001). Finally, intrahypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure

    Effect of adeno-associated virus (AAV)-mediated overexpression of PEPCK-M (Pck2) on Clenbuterol-induced muscle growth

    Get PDF
    We previously identified PEPCK-M (encoded by the Pck2 gene) to be highly up-regulated in skeletal muscle of pigs treated with Ractopamine, an anabolic beta-adrenergic receptor agonist. To determine whether PEPCK-M had a causative role in modulating the skeletal muscle growth response to Ractopamine, we used adeno-associated virus 1 (AAV1) to over-express Pck2 (AAV-Pck2) in murine skeletal muscle. A contralateral limb design was employed, such that each mouse served as its own control (injected with a GFP-only expressing AAV1, labelled AAV-GFP). Daily injections of Clenbuterol (1 mg/kg for 21 days) or vehicle control were also carried out to assess the effects of AAV-Pck2 overexpression on the anabolic response to a beta-adrenergic agonist. AAV-Pck2 overexpression in leg muscles of male C57BL6/J mice for 4 weeks (6–10 weeks of age) increased Pck2 mRNA (~100-fold), protein (not quantifiable) and enzyme activity (~3-fold). There was a trend (p = 0.0798) for AAV-Pck2 overexpression to reduce TA muscle weights, but there was no significant effect on muscle fibre diameters or myosin heavy chain isoform (MyHC) mRNA expression. When skeletal muscle growth was induced by daily administration of Clenbuterol (for 21 days), overexpression of AAV-Pck2 had no effect on the growth response, nor did it alter the expression of Phosphoserine Aminotransferase-1 (Psat1) or Asparagine Synthetase (Asns) mRNA or the Clenbuterol-induced decreases in MyHC IIa and IIx mRNA expression (p = 0.0065 and p = 0.0267 respectively). However AAV-Pck2 overexpression reduced TA muscle weights (p = 0.0434), particularly in the Control (vehicle treated) mice (p = 0.059 for AAV x Clenbuterol interaction) and increased the expression of Seryl-tRNA Synthetase (Sars) mRNA (p = 0.0477). Hence, contrary to the original hypothesis, AAV-Pck2 overexpression reduced TA muscle weights and did not mimic or alter the muscle hypertrophic effects of the beta-adrenergic agonist, Clenbuterol

    In vitro determination of the protein quality of maize varieties cultivated in Malawi using the INFOGEST digestion method

    Get PDF
    There is an urgent need to alleviate protein deficiencies in low-income countries where cereal-based diets dominate. The objective of this study was to use the INFOGEST static digestion method and a recently established analytical workflow to determine the in vitro amino acid digestibility and protein quality of seven maize varieties grown in Malawi. Protein quality was measured using the in vitro digestible indispensable amino acid score (DIAAS). Amino acid digestibility was higher for the dehulled, low fibre, provitamin A maize flour (66%), compared to whole grain maize flours (51 – 61%), suggesting that the presence of fibre reduced digestibility (p < 0.05). Lysine was the limiting amino acid in all varieties, with the following DIAAS values for each variety; Provitamin A maize – 24, SC 719 – 32, Mtsikinya – 37, SC 167 – 39, Quality protein maize (QPM) – 40, Bantum – 40, SC 403 – 44. In addition to the variety of maize, protein quality was dependent on the level of processing and the agronomic practice applied with higher protein quality for the SC 403 variety in which zinc enriched fertiliser was applied. Comparing protein quality data with published in vivo data showed that DIAAS data were in closer agreement than amino acid digestibility data, which was slightly lower than published values, with mean in vitro amino acid digestibilities of 56 - 70% compared to a mean in vivo value of 77%. Overall, the in vitro method was able to correctly predict both the direction and magnitude of response. The INFOGEST digestion method coupled with the new analytical workflow will therefore be useful in the screening of high protein cereal crops and subsequent development of cereal-based foods with high protein quality

    Response of the porcine MYH4-promoter and MYH4-expressing myotubes to known anabolic and catabolic agents in vitro

    Get PDF
    © 2021 The Authors Myosin heavy chain-IIB (MyHC-IIB; encoded by MYH4 or Myh4) expression is often associated with muscle hypertrophic growth. Unlike other large mammals, domestic pig breeds express MyHC-IIB at both the mRNA and protein level. Aim: To utilise a fluorescence-based promoter-reporter system to test the influence of anabolic and catabolic agents on increasing porcine MYH4-promoter activity and determine whether cell hypertrophy was subsequently induced. Methods: C2C12 myoblasts were co-transfected with porcine MYH4-promoter-driven ZsGreen and CMV-driven DsRed expression plasmids. At the onset of differentiation, treatments (dibutyryl cyclic-AMP (dbcAMP), Des(1–3) Insulin-Like Growth Factor-1 (IGF-I), triiodo-L-thyronine (T3) and dexamethasone (Dex)) or appropriate vehicle controls were added and cells maintained for up to four days. At day 4 of differentiation, measurements were collected for total fluorescence and average myotube diameter, as indicators of MYH4-promoter activity and cell hypertrophy respectively. Results: Porcine MYH4-promoter activity increased during C2C12 myogenic differentiation, with a marked increase between days 3 and 4. MYH4-promoter activity was further increased following four days of dbcAMP treatment and average myotube diameter was significantly increased by dbcAMP. Porcine MYH4-promoter activity also tended to be increased by T3 treatment, but there were no effects of Des(1–3) IGF-I or Dex treatment, whereas average myotube diameter was increased by Des(1–3) IGF-I, but not T3 or Dex. Conclusion: Porcine MYH4-promoter activity responded to dbcAMP, Des(1–3) IGF-I and T3 treatment in vitro as observed previously in reported in vivo studies. However, we report that increased MYH4-promoter activity was not always associated with muscle cell hypertrophy. The fluorescence-based reporter system offers a useful tool to study muscle cell hypertrophic growth
    corecore