7 research outputs found

    Design and Development of the SMAP Microwave Radiometer Electronics

    Get PDF
    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI

    Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations

    Full text link
    We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads sampling-up-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that large-amplitude RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps.Comment: 55 pages, 10 figure

    JWST Near-Infrared Detectors: Latest Test Results

    Get PDF
    The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection

    Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    Get PDF
    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins

    Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations

    Get PDF
    We describe how the James Webb Space Telescope (JWST) Near-Infrared Spectrograph's (NIRSpec's) detectors will be read out, and present a model of how noise scales with the number of multiple non-destructive reads sampling-up-the-ramp. We believe that this noise model, which is validated using real and simulated test data, is applicable to most astronomical near-infrared instruments. We describe some non-ideal behaviors that have been observed in engineering grade NIRSpec detectors, and demonstrate that they are unlikely to affect NIRSpec sensitivity, operations, or calibration. These include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real test data, we show that the reset anomaly is: (1) very nearly noiseless and (2) can be easily calibrated out. Likewise, we show that RTN affects only a small and fixed population of pixels. It can therefore be tracked using standard pixel operability maps

    James Webb Space Telescope Near-Infrared Spectrograph: Dark Performance of the First Flight Candidate Detector Arrays

    Get PDF
    The James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 micron) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. This article focuses on the measured performance of the first flight-candidate, and near-flight candidate, detector arrays. These are the first flight-packaged detector arrays that meet NIRSpec's challenging 6 e(-) rms total noise requirement
    corecore