57 research outputs found

    Muscle Quality is More Impaired in Sarcopenic Patients With Chronic Obstructive Pulmonary Disease

    Get PDF
    BACKGROUND: Quadriceps muscle fiber atrophy and a loss of oxidative type I muscle fibers and mitochondrial content often occur in chronic obstructive pulmonary disease (COPD), which adversely affects exercise performance. Sarcopenia is an age-related syndrome characterized by wasting and weakness of muscle mass. We recently showed in a large cohort of patients that COPD-related sarcopenia, in particular in male patients, was not only associated with impaired quadriceps muscle strength but also with decreased exercise performance endurance, which could imply involvement of altered muscle fiber type composition. Hence, we hypothesized that both the fiber atrophy and loss of oxidative muscle fibers are more pronounced in sarcopenic compared with nonsarcopenic patients with COPD. OBJECTIVE: The objective of this study was to investigate quadriceps muscle fiber-type characteristics in relation to presence of sarcopenia in patients with COPD and in healthy age-matched controls. DESIGN: For this retrospective cross-sectional study, body composition (assessed by dual-energy x-ray absorptiometry) and quadriceps muscle biopsy (fiber type distribution and sizes) data were collected from 45 patients with COPDs (aged 42-77 years) and 52 healthy controls (aged 50-77 years). Sarcopenia was based on assessment of appendicular skeletal muscle mass index. RESULTS: Sarcopenia was found in 5.8% of healthy controls and in 31.1% of patients with COPD (P < .01). The proportion of oxidative type I fibers and size of type IIx muscle fibers were decreased in patients with COPD, and the sarcopenic subgroup showed a further decreased proportion as well as a lower size of type I fibers. CONCLUSIONS: Type I muscle fiber proportion is lower in sarcopenic compared with nonsarcopenic patients with COPD. Longitudinal studies may elucidate if the loss of muscle oxidative phenotype drives or accelerates the process of muscle wasting

    Resveratrol and metabolic health in COPD:A proof-of-concept randomized controlled trial

    Get PDF
    Background: Patients with COPD are often characterized by disturbed metabolic health which is reflected in altered body composition. Current studies in healthy subjects suggest that resveratrol improves metabolic health by enhancing muscle mitochondrial function and adipose tissue morphology. The primary objective was to investigate the effect of four weeks resveratrol supplementation on muscle mitochondrial function in patients with COPD. Secondary objectives were to investigate the effect of resveratrol on adipose tissue inflammatory and metabolic gene expression, systemic inflammation and body composition in patients with COPD. Methods: In a double-blind randomized placebo-controlled proof-of-concept study, 21 COPD patients (FEVi: 53 +/- 15% predicted; age: 67 +/- 9 years and BMI: 24.5 +/- 3.3 kg/m(2)) received resveratrol (150 mg/day) or placebo for four weeks. Before and after intervention, blood samples, quadriceps muscle and subcutaneous abdominal fat biopsies were obtained for metabolic and inflammatory profiling. Body composition was assessed by dual energy X-ray absorptiometry. Results: Muscle mitochondrial biogenesis regulators AMPK, SIRT1 and PGC-1 alpha as well as mitochondrial respiration, Oxphos complexes, oxidative enzyme activities and kynurenine aminotransferases were not improved by resveratrol. Plasma high-sensitive C-reactive protein and kynurenine did not change after resveratrol supplementation. Adipose tissue inflammatory markers were unaffected by resveratrol, while markers of glycolysis and lipolysis were significantly increased compared to placebo supplementation. Body weight decreased after resveratrol supplementation (resveratrol -0.95 +/- 1.01 kg vs placebo -0.16 +/- 0.66 kg, p = 0.049) due to a reduction in lean mass (resveratrol -1.79 +/- 1.67 kg vs 0.37 +/- 0.86 kg, p = 0.026). Conclusion: We do not confirm previously reported positive effects of resveratrol on skeletal muscle mitochondrial function in patients with COPD, but show an unexpected decline in lean mass. (C) 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved

    Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers

    Get PDF
    Multidrug resistance (MDR) remains a primary hindrance to curative cancer therapy. Thus, introduction of novel strategies to overcome MDR is of paramount therapeutic significance. Sequestration of chemotherapeutics in lysosomes is an established mechanism of drug resistance. Here, we show that MDR cells display a marked increase in lysosome number. We further demonstrate that imidazoacridinones (IAs), which are cytotoxic fluorochromes, undergo a dramatic compartmentalization in lysosomes because of their hydrophobic weak base nature. We hence developed a novel photoactivation-based pharmacological Trojan horse approach to target and eradicate MDR cancer cells based on photo-rupture of IA-loaded lysosomes and tumor cell lysis via formation of reactive oxygen species. Illumination of IA-loaded cells resulted in lysosomal photodestruction and restoration of parental cell drug sensitivity. Lysosomal photodestruction of MDR cells overexpressing the key MDR efflux transporters ABCG2, ABCB1 or ABCC1 resulted in 10- to 52-fold lower IC(50) values of various IAs, thereby restoring parental cell sensitivity. Finally, in vivo application of this photodynamic therapy strategy after i.v. injection of IAs in human ovarian tumor xenografts in the chorioallantoic membrane model revealed selective destruction of tumors and their associated vasculature. These findings identify lysosomal sequestration of IAs as an Achilles heel of MDR cells that can be harnessed to eradicate MDR tumor cells via lysosomal photodestruction

    Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics

    Get PDF
    Rationale:Atherosclerotic lesions are known for their cellular heterogeneity, yet the molecular complexity within the cells of human plaques has not been fully assessed.Objective:Using single-cell transcriptomics and chromatin accessibility, we gained a better understanding of the pathophysiology underlying human atherosclerosis.Methods and Results:We performed single-cell RNA and single-cell ATAC sequencing on human carotid atherosclerotic plaques to define the cells at play and determine their transcriptomic and epigenomic characteristics. We identified 14 distinct cell populations including endothelial cells, smooth muscle cells, mast cells, B cells, myeloid cells, and T cells and identified multiple cellular activation states and suggested cellular interconversions. Within the endothelial cell population, we defined subsets with angiogenic capacity plus clear signs of endothelial to mesenchymal transition. CD4(+) and CD8(+) T cells showed activation-based subclasses, each with a gradual decline from a cytotoxic to a more quiescent phenotype. Myeloid cells included 2 populations of proinflammatory macrophages showing IL (interleukin) 1B or TNF (tumor necrosis factor) expression as well as a foam cell-like population expressing TREM2 (triggering receptor expressed on myeloid cells 2) and displaying a fibrosis-promoting phenotype. ATACseq data identified specific transcription factors associated with the myeloid subpopulation and T cell cytokine profiles underlying mutual activation between both cell types. Finally, cardiovascular disease susceptibility genes identified using public genome-wide association studies data were particularly enriched in lesional macrophages, endothelial, and smooth muscle cells.Conclusions:This study provides a transcriptome-based cellular landscape of human atherosclerotic plaques and highlights cellular plasticity and intercellular communication at the site of disease. This detailed definition of cell communities at play in atherosclerosis will facilitate cell-based mapping of novel interventional targets with direct functional relevance for the treatment of human disease

    Covered stents versus Bare-metal stents in chronic atherosclerotic Gastrointestinal Ischemia (CoBaGI): Study protocol for a randomized controlled trial

    Get PDF
    Background: Chronic mesenteric ischemia (CMI) is the result of insufficient blood supply to the gastrointestinal tract and is caused by atherosclerotic stenosis of one or more mesenteric arteries in > 90% of cases. Revascularization therapy is indicated in patients with a diagnosis of atherosclerotic CMI to relieve symptoms and to prevent acute-on-chronic mesenteric ischemia, which is associated with high morbidity and mortality. Endovascular therapy has rapidly evolved and has replaced surgery as the first choice of treatment in CMI. Bare-metal stents (BMS) are standard care currently, although retrospective studies suggested significantly highe

    Acute exacerbations of COPD: it's the weekend but it can't wait until Monday

    No full text
    • …
    corecore