3 research outputs found

    Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon

    Full text link
    The raise and peel model of a one-dimensional fluctuating interface (model A) is extended by considering one source (model B) or two sources (model C) at the boundaries. The Hamiltonians describing the three processes have, in the thermodynamic limit, spectra given by conformal field theory. The probability of the different configurations in the stationary states of the three models are not only related but have interesting combinatorial properties. We show that by extending Pascal's triangle (which gives solutions to linear relations in terms of integer numbers), to an hexagon, one obtains integer solutions of bilinear relations. These solutions give not only the weights of the various configurations in the three models but also give an insight to the connections between the probability distributions in the stationary states of the three models. Interestingly enough, Pascal's hexagon also gives solutions to a Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few references are adde

    Refined Razumov-Stroganov conjectures for open boundaries

    Full text link
    Recently it has been conjectured that the ground-state of a Markovian Hamiltonian, with one boundary operator, acting in a link pattern space is related to vertically and horizontally symmetric alternating-sign matrices (equivalently fully-packed loop configurations (FPL) on a grid with special boundaries).We extend this conjecture by introducing an arbitrary boundary parameter. We show that the parameter dependent ground state is related to refined vertically symmetric alternating-sign matrices i.e. with prescribed configurations (respectively, prescribed FPL configurations) in the next to central row. We also conjecture a relation between the ground-state of a Markovian Hamiltonian with two boundary operators and arbitrary coefficients and some doubly refined (dependence on two parameters) FPL configurations. Our conjectures might be useful in the study of ground-states of the O(1) and XXZ models, as well as the stationary states of Raise and Peel models.Comment: 11 pages LaTeX, 8 postscript figure

    The Grand-Canonical Asymmetric Exclusion Process and the One-Transit Walk

    Get PDF
    The one-dimensional Asymmetric Exclusion Process (ASEP) is a paradigm for nonequilibrium dynamics, in particular driven diffusive processes. It is usually considered in a canonical ensemble in which the number of sites is fixed. We observe that the grand-canonical partition function for the ASEP is remarkably simple. It allows a simple direct derivation of the asymptotics of the canonical normalization in various phases and of the correspondence with One-Transit Walks recently observed by Brak et.al.Comment: Published versio
    corecore