4 research outputs found

    Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1

    Get PDF
    Background & AimsMucosal-Associated Invariant T (MAIT) cells are innate-like T cells characterised by the invariant TCR-chain, Vα7.2-Jα33, and are restricted by MR1, which presents bacterial vitamin B metabolites. They are important for antibacterial immunity at mucosal sites; however, detailed characteristics of liver-infiltrating MAIT (LI-MAIT) and their role in biliary immune surveillance remain unexplored.MethodsThe phenotype and intrahepatic localisation of human LI-MAIT cells was examined in diseased and normal livers. MAIT cell activation in response to E. coli-exposed macrophages, biliary epithelial cells (BEC) and liver B cells was assessed with/without anti-MR1.ResultsIntrahepatic MAIT cells predominantly localised to bile ducts in the portal tracts. Consistent with this distribution, they expressed biliary tropic chemokine receptors CCR6, CXCR6, and integrin αEβ7. LI-MAIT cells were also present in the hepatic sinusoids and possessed tissue-homing chemokine receptor CXCR3 and integrins LFA-1 and VLA-4, suggesting their recruitment via hepatic sinusoids. LI-MAIT cells were enriched in the parenchyma of acute liver failure livers compared to chronic diseased livers. LI-MAIT cells had an activated, effector memory phenotype, expressed α4β7 and receptors for IL-12, IL-18, and IL-23. Importantly, in response to E. coli-exposed macrophages, liver B cells and BEC, MAIT cells upregulated IFN-γ and CD40 Ligand and degranulated in an MR1-dependent, cytokine-independent manner. In addition, diseased liver MAIT cells expressed T-bet and RORγt and the cytokines IFN-γ, TNF-α, and IL-17.ConclusionsOur findings provide the first evidence of an immune surveillance effector response for MAIT cells towards BEC in human liver; thus they could be manipulated for treatment of biliary disease in the future

    Changes in natural killer cells and exhausted memory regulatory T Cells with corticosteroid therapy in acute autoimmune hepatitis

    Get PDF
    Autoimmune hepatitis (AIH) is an immune-mediated liver disease currently treated by immunosuppressive medications with significant side effects. Thus, novel mechanistic treatments are greatly needed. We performed prospective deep immunophenotyping of blood immune cells in patients with acute AIH before and after corticosteroid therapy. Blood samples from 26 patients with acute AIH (United Kingdom-AIH Consortium) were phenotyped by flow cytometry at baseline and 4 months after starting corticosteroids. Pretreatment liver tissues were stained for forkhead box P3-positive (FOXP3POS) regulatory T cells (Tregs), clusters of differentiation (CD)56POS natural killer (NK) cells, and chemokine (C-X-C motif) ligand 10. Chemokine secretion by cultured primary hepatocyte and biliary epithelial cells was measured by enzyme-linked immunosorbent assay. Functional coculture assays with stimulated NK cells and Tregs were performed. CD161 ligand, lectin-like transcript-1 expression by intrahepatic immune cells was demonstrated with flow cytometry. Frequencies of NKbright cells declined with therapy (P < 0.001) and correlated with levels of alanine aminotransferase (P = 0.023). The Treg:NKbright ratio was lower pretreatment, and Tregs had an activated memory phenotype with high levels of CD39, cytotoxic T lymphocyte antigen 4, and FOXP3 but also high programmed death ligand 1, indicating exhaustion. Coculture experiments suggested the Tregs could not efficiently suppress interferon-γ secretion by NK cells. Both Tregs and NK cells had high expression of liver infiltration and T helper 17 plasticity-associated marker CD161 (P = 0.04). Pretreatment and CD161pos NK cells expressed high levels of perforin and granzyme B, consistent with an activated effector phenotype (P < 0.05). Lectin-like transcript 1, a ligand for CD161, is expressed on intrahepatic B cells, monocytes, and neutrophils. Conclusion: Activated effector NK cells, which correlate with biochemical measurements of hepatitis, and exhausted memory Tregs are increased in the blood of patients with treatment-naive AIH and decline with corticosteroid therapy. Inadequate regulation of NK cells by exhausted FOXP3pos Tregs may play a role in AIH pathogenesis and contribute to liver injury. (Hepatology Communications 2018;2:421-436)

    Reciprocal Regulation of Substance P and IL-12/IL-23 and the Associated Cytokines, IFNγ/IL-17: A Perspective on the Relevance of This Interaction to Multiple Sclerosis

    No full text
    The neuropeptide substance P (SP) exhibits cytokine-like properties and exerts different effects in autoimmune inflammation. Various immune cells express SP and its neurokinin-1 receptor (NK1R) isoforms. A role for SP has been demonstrated in a number of autoimmune conditions, including multiple sclerosis (MS). In this work, we studied the role of SP and NK1R in human immune cells with a focus on their relationship with IL-12/IL-23 family cytokines and the associated IFN-γ/IL-17. AIMS: (1) To determine the role of SP mediated effects on induction of various inflammatory cytokines in peripheral blood mononuclear cells (PBMC); (2) to investigate the expression of SP and its receptor in T cells and the effects of stimulation with IL-12 and IL-23. Quantitative real-time PCR, flow cytometry, ELISA, promoter studies on PBMC and primary T cells from healthy volunteers, and Jurkat cell line. Treatment with SP significantly increased the expression of IL-12/IL-23 subunit p40, IL-23 p19 and IL-12 p35 mRNA in human PBMC. Expression of NK1R and SP in T cells was upregulated by IL-23 but a trend was observed with IL-12. The IL-23 effect likely involves IL-17 production that additionally mediates IL-23 effects. Mutual interactions exist with SP enhancing the cytokines IL-23 and IL-12, and SP and NK1R expression being differentially but potentially synergistically regulated by these cytokines. These findings suggest a proinflammatory role for SP in autoimmune inflammation. We propose a model whereby immunocyte derived SP stimulates Th1 and Th17 autoreactive cells migrating to the central nervous system (CNS), enhances their crossing the blood brain barrier and perpetuates inflammation in the CNS by being released from damaged nerves and activating both resident glia and infiltrating immune cells. SP may be a therapeutic target in MS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11481-015-9589-x) contains supplementary material, which is available to authorized users
    corecore