40 research outputs found

    Nutrient enrichment induces a shift in dissolved organic carbon (DOC) metabolism in oligotrophic freshwater sediments

    Get PDF
    Dissolved organic carbon (DOC) turnover in aquatic environments is modulated by the presence of other key macronutrients, including nitrogen (N) and phosphorus (P). The ratio of these nutrients directly affects the rates of microbial growth and nutrient processing in the natural environment. The aim of this study was to investigate how labile DOC metabolism responds to changes in nutrient stoichiometry using 14C tracers in conjunction with untargeted analysis of the primary metabolome in upland peat river sediments. N addition led to an increase in 14C-glucose uptake, indicating that the sediments were likely to be primarily N limited. The mineralisation of glucose to 14CO2 reduced following N addition, indicating that nutrient addition induced shifts in internal carbon (C) partitioning and microbial C use efficiency (CUE). This is directly supported by the metabolomic profile data which identified significant differences in 22 known metabolites (34% of the total) and 30 unknown metabolites (16% of the total) upon the addition of either N or P. 14C-glucose addition increased the production of organic acids known to be involved in mineral P dissolution (e.g. gluconic acid, malic acid). Conversely, when N was not added, the addition of glucose led to the production of the sugar alcohols, mannitol and sorbitol, which are well known microbial C storage compounds. P addition resulted in increased levels of several amino acids (e.g. alanine, glycine) which may reflect greater rates of microbial growth or the P requirement for coenzymes required for amino acid synthesis. We conclude that inorganic nutrient enrichment in addition to labile C inputs has the potential to substantially alter in-stream biogeochemical cycling in oligotrophic freshwaters

    Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments

    Get PDF
    Dissolved organic matter (DOM) represents a key component of carbon (C) cycling in freshwater ecosystems. While the behaviour of bulk dissolved organic carbon (DOC) in aquatic ecosystems is well studied, comparatively little is known about the turnover of specific DOC compounds. The aim of this study was to investigate the persistence of 14C-labelled low molecular weight (LMW) DOC at a wide range of concentrations (0.1 µM to 10 mM), in sediments and waters from oligotrophic and mesotrophic rivers within the same catchment. Overall, rates of DOC loss varied between compound groups (amino acids > sugars = organic acids > phenolics). Sediment-based microbial communities contributed to higher DOC loss from river waters, which was attributed, in part, to its greater microbial biomass. At higher DOC compound concentrations, DOC loss was greater in mesotrophic rivers in comparison to oligotrophic headwaters. A lag-phase in substrate use within sediments provided evidence of microbial growth and adaptation, ascribed here to the lack of inorganic nutrient limitation on microbial C processing in mesotrophic communities. We conclude that the higher microbial biomass and available inorganic nutrients in sediments enables the rapid processing of LMW DOC, particularly during high C enrichment events and in N and P-rich mesotrophic environments

    Microbial use of low molecular weight DOM in filtered and unfiltered freshwater:Role of ultra-small microorganisms and implications for water quality monitoring

    Get PDF
    Dissolved organic matter (DOM) plays a central role in regulating productivity and nutrient cycling in freshwaters. It is therefore vital that we can representatively sample and preserve DOM in freshwaters for subsequent analysis. Here we investigated the effect of filtration, temperature (5 and 25 °C) and acidification (HCl) on the persistence of low molecular weight (MW) dissolved organic carbon (DOC), nitrogen (DON) and orthophosphate in oligotrophic and eutrophic freshwater environments. Our results showed the rapid loss of isotopically-labelled glucose and amino acids from both filtered (0.22 and 0.45 μm) and unfiltered waters. We ascribe this substrate depletion in filtered samples to the activity of ultra-small (< 0.45 μm) microorganisms (bacteria and archaea) present in the water. As expected, the rate of C, N and P loss was much greater at higher temperatures and was repressed by the addition of HCl. Based on our results and an evaluation of the protocols used in recently published studies, we conclude that current techniques used to sample water for low MW DOM characterisation are frequently inadequate and lack proper validation. In contrast to the high degree of analytical precision and rigorous statistical analysis of most studies, we argue that insufficient consideration is still given to the presence of ultra-small microorganisms and potential changes that can occur in the low MW fraction of DOM prior to analysis

    Land cover and nutrient enrichment regulates low-molecular weight dissolved organic matter turnover in freshwater ecosystems

    Get PDF
    Dissolved organic matter (DOM) is a complex mixture of carbon-containing compounds. The low-molecular weight (LMW) fraction constitutes thousands of different compounds and represents a substantial proportion of DOM in aquatic ecosystems. The turnover rates of this LMW DOM can be extremely high. Due to the challenges of measuring this pool at a molecular scale, comparatively little is known of the fate of LMW DOM compounds in lotic systems. This study addresses this knowledge gap, investigating the microbial processing of LMW DOM across 45 sites representing a range of physicochemical gradients and dominant land covers in the United Kingdom. Radioisotope tracers representing LMW dissolved organic carbon (DOC) (glucose), dissolved organic nitrogen (DON) (amino acid mixture), dissolved organic phosphorus (DOP) (glucose-6-phosphate), and soluble reactive phosphorus (SRP, measured as orthophosphate) were used to measure the microbial uptake of different DOM compounds in river waters. The amount of DOM biodegradation varied between different components (DON ≥ DOC > DOP), with the rate of turnover of all three increasing along a gradient of N and P enrichment across the range of sites. Conversely, the uptake of SRP decreased along this same gradient. This was ascribed to preferential utilization of DOP over SRP. Dominant land cover had a significant effect on DOM use as a resource, due to its control of nutrient enrichment within the catchments. We conclude that nutrient enrichment of river waters will lead to further DOM removal from the water column, increased microbial growth, and a decrease in stream oxygen saturation, exacerbating the effects of eutrophication in rivers

    High representation of archaea across all depths in oxic and low-pH sediment layers underlying an acidic stream

    Get PDF
    Parys Mountain or Mynydd Parys (Isle of Anglesey, United Kingdom) is a mine-impacted environment, which accommodates a variety of acidophilic organisms. Our previous research of water and sediments from one of the surface acidic streams showed a high proportion of archaea in the total microbial community. To understand the spatial distribution of archaea, we sampled cores (0–20 cm) of sediment and conducted chemical analyses and taxonomic profiling of microbiomes using 16S rRNA gene amplicon sequencing in different core layers. The taxonomic affiliation of sequencing reads indicated that archaea represented between 6.2 and 54% of the microbial community at all sediment depths. Majority of archaea were associated with the order Thermoplasmatales, with the most abundant group of sequences being clustered closely with the phylotype B_DKE, followed by “E-plasma,” “A-plasma,” other yet uncultured Thermoplasmatales with Ferroplasma and Cuniculiplasma spp. represented in minor proportions. Thermoplasmatales were found at all depths and in the whole range of chemical conditions with their abundance correlating with sediment Fe, As, Cr, and Mn contents. The bacterial microbiome component was largely composed in all layers of sediment by members of the phyla Proteobacteria, Actinobacteria, Nitrospirae, Firmicutes, uncultured Chloroflexi (AD3 group), and Acidobacteria. This study has revealed a high abundance of Thermoplasmatales in acid mine drainage-affected sediment layers and pointed at these organisms being the main contributors to carbon, and probably to iron and sulfur cycles in this ecosystem

    Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning.

    Get PDF
    Rapidly assessing biodiversity is essential for environmental monitoring; however, traditional approaches are limited in the scope needed for most ecological systems. Environmental DNA (eDNA) based assessment offers enhanced scope for assessing biodiversity, while also increasing sampling efficiency and reducing processing time, compared to traditional methods. Here we investigated the effects of landuse and seasonality on headwater community richness and functional diversity, via spatio-temporal dynamics, using both eDNA and traditional sampling. We found that eDNA provided greater resolution in assessing biodiversity dynamics in time and space, compared to traditional sampling. Community richness was seasonally linked, peaking in spring and summer, with temporal turnover having a greater effect on community composition compared to localized nestedness. Overall, our assessment of ecosystem function shows that community formation is driven by regional resource availability, implying regional management requirements should be considered. Our findings show that eDNA based ecological assessment is a powerful, rapid and effective assessment strategy that enables complex spatio-temporal studies of community diversity and ecosystem function, previously infeasible using traditional methods

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Determining patterns in the composition of dissolved organic matter in fresh waters according to land use and management

    No full text
    In fresh waters, the origins of dissolved organic matter (DOM) have been found to exert a fundamental control on its reactivity, and ultimately, its ecosystem functional role. A detailed understanding of landscape scale factors that control the export of DOM to aquatic ecosystems is, therefore, pivotal if the effects of DOM flux to fresh waters are to be fully understood. In this study we present data from a national sampling campaign across the United Kingdom in which we explore the variability in DOM composition in three broad landscape types defined by similar precipitation, geology, land use and management, hydrology, and nutrient enrichment status. We characterised samples from fifty-one sites, grouping them into one of three major underlying classifications: circumneutral streams underlain by clay and mudstone (referred to as ‘clay’), alkaline streams underlain by Cretaceous Chalk or by Carboniferous or Jurassic Limestone (‘limestone’), and acidic streams in peatland catchments underlain by a range of low permeability lithologies (‘peat’). DOM composition was assessed through organic matter stoichiometry (organic carbon: organic nitrogen; organic carbon: organic phosphorus; C/N(P)DOM) and metrics derived from ultra-violet (UV)/visible spectroscopic analysis of DOM such as specific UV absorption (a254 nm; SUVA254). We found similar SUVA254, C/NDOM and DOM/a254 relationships within classifications, demonstrating that despite a large degree of heterogeneity within environments, catchments with shared environmental character and anthropogenic disturbance export DOM with a similar composition and character. Improving our understanding of DOM characterisation is important to help predict shifts in stream ecosystem function, and ecological responses to enrichment or mitigation efforts and how these may result in species composition shifts and biodiversity loss in freshwater ecosystems
    corecore