4 research outputs found

    Percussion hemoglobinuria - a novel term for hand trauma-induced mechanical hemolysis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Extracorpuscular hemolysis caused by mechanical trauma has been well described in relation to lower extremity use, such as in soldiers and runners. Terms such as "march hemoglobinuria", "foot strike hemolysis" and "runners hemoglobinuria" have previously been coined and are easily recalled. Newer cases, however, are being identified in individuals vigorously using their upper extremities, such as drum players who use their hands to strike the instrument. Given the increased recognition of upper extremity-related mechanical hemolysis and hemoglobinuria in drummers, and the use of hand drumming worldwide, we would like introduce a novel term for this condition and call it "percussion hemoglobinuria".</p> <p>Case presentation</p> <p>A 24-year-old Caucasian man presented with reddish brown discoloration of his urine after playing the djembe drum. Urine examination after a rigorous practice session revealed blood on the dipstick, and 0 to 2 red blood cells per high power field microscopically. The urine sample was negative for myoglobulin. Other causes of hemolysis and hematuria were excluded and cessation of drum playing resulted in resolution of his symptoms.</p> <p>Conclusions</p> <p>The association of mechanical trauma-induced hemoglobinuria and playing hand percussion instruments is increasingly being recognized. We, however, feel that the true prevalence is higher than what has been previously recorded in the literature. By coining the term "percussion hemoglobinuria" we hope to raise the awareness of screening for upper extremity trauma-induced mechanical hemolysis in the evaluation of a patient with hemoglobinuria.</p

    A multi-center retrospective cohort study defines the spectrum of kidney pathology in Coronavirus 2019 Disease (COVID-19)

    No full text
    Kidney failure is common in patients with Coronavirus Disease-19 (COVID-19), resulting in increased morbidity and mortality. In an international collaboration, 284 kidney biopsies were evaluated to improve understanding of kidney disease in COVID-19. Diagnoses were compared to five years of 63,575 native biopsies prior to the pandemic and 13,955 allograft biopsies to identify diseases that have increased in patients with COVID-19. Genotyping for APOL1 G1 and G2 alleles was performed in 107 African American and Hispanic patients. Immunohistochemistry for SARS-CoV-2 was utilized to assess direct viral infection in 273 cases along with clinical information at the time of biopsy. The leading indication for native biopsy was acute kidney injury (45.4%), followed by proteinuria with or without concurrent acute kidney injury (42.6%). There were more African American patients (44.6%) than patients of other ethnicities. The most common diagnosis in native biopsies was collapsing glomerulopathy (25.8%), which was associated with high-risk APOL1 genotypes in 91.7% of cases. Compared to the five-year biopsy database, the frequency of myoglobin cast nephropathy and proliferative glomerulonephritis with monoclonal IgG deposits was also increased in patients with COVID-19 (3.3% and 1.7%, respectively), while there was a reduced frequency of chronic conditions (including diabetes mellitus, IgA nephropathy, and arterionephrosclerosis) as the primary diagnosis. In transplants, the leading indication was acute kidney injury (86.4%), for which rejection was the predominant diagnosis (61.4%). Direct SARS-CoV-2 viral infection was not identified. Thus, our multi-center large case series identified kidney diseases that disproportionately affect patients with COVID-19 and demonstrated a high frequency of APOL1 high-risk genotypes within this group, with no evidence of direct viral infection within the kidney
    corecore