521 research outputs found

    Photometric and spectroscopic study of the intermediate-age open cluster NGC 2355

    Get PDF
    In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel BB, VV, and IcI_c filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, as done in other papers of this series. Additional spectroscopic observations with FIES@NOT of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]=−0.06=-0.06 dex, age between 0.8 and 1 Gyr, reddening E(B−V)E(B-V) in the range 0.14 and 0.19 mag, and distance modulus (m−M)0(m-M)_0 of about 11 mag. We also investigated the abundances of O, Na, Al, α\alpha, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC~2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.Comment: 20 pages, 11 figures, Accepted on MNRA

    Na-O anticorrelation and HB. IX. Kinematics of the program clusters. A link between systemic rotation and HB morphology?

    Get PDF
    We use accurate radial velocities for 1981 member stars in 20 Galactic globular clusters, collected within our large survey aimed at the analysis of the Na-O anti-correlation, to study the internal kinematics of the clusters. We performed the first systematic exploration of the possible connections between cluster kinematics and the multiple populations phenomenon in GCs. We did not find any significant correlation between Na abundance and either velocity dispersion or systemic rotation. We searched for systemic rotation in the eight clusters of our sample that lack such analysis from previous works in the literature (NGC2808, NGC5904, NGC6171, NGC6254, NGC6397, NGC6388, NGC6441, and NGC6838). These clusters are found to span a large range of rotational amplitudes, from ~0.0 km/s (NGC6397) to ~13.0 km/s (NGC6441). We found a significant correlation between the ratio of rotational velocity to central velocity dispersion (V_{rot}/sigma_0) and the Horizontal Branch Morphology parameter (B-R)/(B+R+V). V_{rot}/sigma_0 is found to correlate also with metallicity, possibly hinting to a significant role of dissipation in the process of formation of globular clusters. V_{rot} is found to correlate well with (B-R)/(B+R+V), M_V, sigma_0 and [Fe/H]. All these correlations strongly suggest that systemic rotation may be intimately linked with the processes that led to the formation of globular clusters and the stellar populations they host.Comment: Accepted for publication on Astronomy & Astrophysics. Pdflatex, 16 pages, 16 pdf figures. The position angles of the rotation axes have been corrected, since the values reported in the previous version were erroneous. The results of the analysis are unchanged. The manuscript has also been processed by a language edito

    The normal chemistry of multiple stellar populations in the dense globular cluster NGC 6093 (M 80)

    Get PDF
    We present the abundance analysis of 82 red giant branch stars in the dense, metal-poor globular cluster NGC 6093 (M 80), the largest sample of stars analyzed in this way for this cluster. From high resolution UVES spectra of 14 stars and intermediate resolution GIRAFFE spectra for the other stars we derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu. On our UVES metallicity scale the mean metal abundance of M 80 is [Fe/H]=-1.791+/-0.006+/-0.076 (+/-statistical +/-systematic error) with rms=0.023 (14 stars). M 80 shows star to star variations in proton-capture elements, and the extension of the Na-O anticorrelation perfectly fit the relations with (i) total cluster mass, (ii) horizontal branch morphology, and (iii) cluster concentration previously found by our group. The chemistry of multiple stellar populations in M 80 does not look extreme. The cluster is also a typical representative of halo globular clusters for what concerns the pattern of alpha-capture and Fe-group elements. However we found that a significant contribution from the s-process is required to account for the distribution of neutron-capture elements. A minority of stars in M 80 seem to exhibit slightly enhanced abundances of s-process species, compatible with those observed in M 22 and NGC 1851, although further confirmation from larger samples is required.Comment: 18 pages, 21 figures, 10 tables; accepted for publication on Astronomy and Astrophysic

    Polylactic acid as biobased binder for the production of 3D printing filaments for Ti6Al4V alloy manufacturing via bound metal deposition

    Get PDF
    In this paper, a biobased binder mainly composed of polylactic acid (PLA) was developed for the production of Ti6Al4V feedstock suitable for 3D printing via material extrusion. 3D printed samples were debound via solvent and thermal treatments and successfully sintered in reducing atmosphere obtaining dense metallic components. The designed and produced bio-binder is completely eliminated during the debinding processes leading to sintered samples showing a high densification (93–94%), with a microstructure composed of primary alpha phase with segregated beta phase at grain boundaries and having average grain size of 70 μm. 3D printed sintered samples show good mechanical properties (yield strength (σy) = 662 MPa, ultimate tensilte strength (UTS) = 743 MPa, elongation at break (εmax) = 12%, hardness = 5.15 GPa) influenced by the sintering parameters and the presence of some degree of micro-porosity in the final structure

    NGC 362: another globular cluster with a split red giant branch

    Full text link
    We obtained FLAMES GIRAFFE+UVES spectra for both first and second-generation red giant branch (RGB) stars in the globular cluster (GC) NGC 362 and used them to derive abundances of 21 atomic species for a sample of 92 stars. The surveyed elements include proton-capture (O, Na, Mg, Al, Si), alpha-capture (Ca, Ti), Fe-peak (Sc, V, Mn, Co, Ni, Cu), and neutron-capture elements (Y, Zr, Ba, La, Ce, Nd, Eu, Dy). The analysis is fully consistent with that presented for twenty GCs in previous papers of this series. Stars in NGC 362 seem to be clustered into two discrete groups along the Na-O anti-correlation, with a gap at [O/Na] 0 dex. Na-rich, second generation stars show a trend to be more centrally concentrated, although the level of confidence is not very high. When compared to the classical second-parameter twin NGC 288, with similar metallicity, but different horizontal branch type and much lower total mass, the proton-capture processing in stars of NGC 362 seems to be more extreme, confirming previous analysis. We discovered the presence of a secondary RGB sequence, redder than the bulk of the RGB: a preliminary estimate shows that this sequence comprises about 6% of RGB stars. Our spectroscopic data and literature photometry indicate that this sequence is populated almost exclusively by giants rich in Ba, and probably rich in all s-process elements, as found in other clusters. In this regards, NGC 362 joins previously studied GCs like NGC 1851, NGC 6656 (M 22), and NGC 7089 (M 2).Comment: 16 pages, 23 figures, 11 tables, accepted for publication on Astronomy and Astrophysic

    The extreme chemistry of multiple stellar populations in the metal-poor globular cluster NGC 4833

    Full text link
    Our FLAMES survey of Na-O anticorrelation in globular clusters (GCs) is extended to NGC 4833, a metal-poor GC with a long blue tail on the horizontal branch (HB). We present the abundance analysis for a large sample of 78 red giants based on UVES and GIRAFFE spectra acquired at the ESO-VLT. We derived abundances of Na, O, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, La, Nd. This is the first extensive study of this cluster from high resolution spectroscopy. On the scale of our survey, the metallicity of NGC 4833 is [Fe/H]=-2.015+/-0.004+/-0.084 dex (rms=0.014 dex) from 12 stars observed with UVES, where the first error is from statistics and the second one refers to the systematic effects. The iron abundance in NGC 4833 is homogeneous at better than 6%. On the other hand, the light elements involved in proton-capture reactions at high temperature show the large star-to-star variations observed in almost all GCs studied so far. The Na-O anticorrelation in NGC 4833 is quite extended, as expected from the high temperatures reached by stars on the HB, and NGC 4833 contains a conspicuous fraction of stars with extreme [O/Na] ratios. More striking is the finding that large star-to-star variations are seen also for Mg, which spans a range of more than 0.5 dex in this GC. Depletions in Mg are correlated to the abundances of O and anti-correlated with Na, Al, and Si abundances. This pattern suggests the action of nuclear processing at unusually high temperatures, producing the extreme chemistry observed in the stellar generations of NGC 4833. This extreme changes are also seen in giants of the much more massive GCs M 54 and omega Cen, and our conclusion is that NGC 4833 has probably lost a conpicuous fraction of its original mass due to bulge shocking, as also indicated by its orbit.Comment: 18 pages, 16 figures, 11 tables; accepted for publication on Astronomy and Astrophysic

    The complex Halpha line profile of the bright companion to PSR J1740-5340 in NGC 6397

    Full text link
    We present a detailed study of the Halpha and He I spectral features of COM J1740-5340 (the companion to PSR J1740-5340 in the Galactic Globular Cluster NGC 6397), exploiting a series of high resolution spectra obtained at different orbital phases. The Halpha absorption line shows a complex two-component structure, revealing that optically thin hydrogen gas resides outside the Roche lobe of COM J1740-5340. The line morphology precludes the existence of any residual disk around the millisecond pulsar, and suggests the presence of a stream of material going from the companion toward the neutron star. This material never reaches the neutron star surface, being driven back by the pulsar radiation far beyond COM J1740-5340. By analyzing the He I absorption lines as a function of orbital phase, we infer the presence of an overheated longitudinal strip (about 150 times narrower than it is long) on the COM J1740-5340 surface facing the radio pulsar.Comment: 12 pages, 4 figures, accepted by ApJ

    Photometric metallicity for 694233 Galactic giant stars from Gaia DR3 synthetic Stromgren photometry. Metallicity distribution functions of halo sub-structures

    Full text link
    We use the calibrations by Calamida et al. and by Hilker et al., and the standardised synthetic photometry in the v, b, and y Stromgren passbands from Gaia DR3 BP/RP spectra, to obtain photometric metallicities for a selected sample of 694233 old Galactic giant stars having |b|>20.0 and parallax uncertainties lower than 10%. The zero point of both sets of photometric metallicities has been shifted to to ensure optimal match with the spectroscopic [Fe/H] values for 44785 stars in common with APOGEE DR17, focusing on the metallicity range where they provide the highest accuracy. The metallicities derived in this way from the Calamida et al. calibration display a typical accuracy of ~0.1 dex and 1 sigma precision ~0.2 dex in the range -2.2 <=[Fe/H]<= -0.4, while they show a systematic trend with [Fe/H] at higher metallicity, beyond the applicability range of the relation. Those derived from the Hilker et al. calibration display, in general, worse precision, and lower accuracy in the metal-poor regime, but have a median accuracy < 0.05 dex for [Fe/H]>= -0.8. These results are confirmed and, consequently, the metallicities validated, by comparison with large sets of spectroscopic metallicities from various surveys. The newly obtained metallicities are used to derive metallicity distributions for several previously identified sub-structures in the Galactic halo with an unprecedented number of stars. The catalogue including both sets of metallicities and the associated uncertainties is made publicly available.Comment: Accepted for publication by Astronomy & Astrophysics. Latex. 20 pages, 21 color figures. The catalogue will be publicly available at CDS. In the meanwhile it is available upon request to the first autho
    • …
    corecore