230 research outputs found

    The Influence of Coastal Access on Isotope Variation in Icelandic Arctic Foxes

    Get PDF
    To quantify the ecological effects of predator populations, it is important to evaluate how population-level specializations are dictated by intra- versus inter-individual dietary variation. Coastal habitats contain prey from the terrestrial biome, the marine biome and prey confined to the coastal region. Such habitats have therefore been suggested to better support predator populations compared to habitats without coastal access. We used stable isotope data on a small generalist predator, the arctic fox, to infer dietary strategies between adult and juvenile individuals with and without coastal access on Iceland. Our results suggest that foxes in coastal habitats exhibited a broader isotope niche breadth compared to foxes in inland habitats. This broader niche was related to a greater diversity of individual strategies rather than to a uniform increase in individual niche breadth or by individuals retaining their specialization but increasing their niche differentiation. Juveniles in coastal habitats exhibited a narrower isotope niche breadth compared to both adults and juveniles in inland habitats, and juveniles in inland habitats inhabited a lower proportion of their total isotope niche compared to adults and juveniles from coastal habitats. Juveniles in both habitats exhibited lower intra-individual variation compared to adults. Based on these results, we suggest that foxes in both habitats were highly selective with respect to the resources they used to feed offspring, but that foxes in coastal habitats preferentially utilized marine resources for this purpose. We stress that coastal habitats should be regarded as high priority areas for conservation of generalist predators as they appear to offer a wide variety of dietary options that allow for greater flexibility in dietary strategies

    Anaesthesia and PET of the Brain

    Get PDF
    Although drugs have been used to administer general anaesthesia for more than a century and a half, relatively little was known until recently about the molecular and cellular effects of the anaesthetic agents and the neurobiology of anaesthesia. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have played a valuable role in improving this knowledge. PET studies using 11C-flumazenil binding have been used to demonstrate that the molecular action of some, but not all, of the current anaesthetic agents is mediated via the GABAA receptor. Using different tracers labelled with 18F, 11C and 15O, PET studies have shown the patterns of changes in cerebral metabolism and blood flow associated with different intravenous and volatile anaesthetic agents. Within classes of volatile agents, there are minor variations in patterns. More profound differences are found between classes of agents. Interestingly, all agents cause alterations in the blood flow and metabolism of the thalamus, providing strong support for the hypothesis that the anaesthetic agents interfere with consciousness by interfering with thalamocortical communication.</p

    War Waging and Reassessment: Vietnam

    No full text
    • …
    corecore