9 research outputs found
NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells
Protein-fragment
complementation assays (PCAs) are widely used
for investigating protein interactions. However, the fragments used
are structurally compromised and have not been optimized nor thoroughly
characterized for accurately assessing these interactions. We took
advantage of the small size and bright luminescence of NanoLuc to
engineer a new complementation reporter (NanoBiT). By design, the
NanoBiT subunits (i.e., 1.3 kDa peptide, 18 kDa polypeptide) weakly
associate so that their assembly into a luminescent complex is dictated
by the interaction characteristics of the target proteins onto which
they are appended. To ascertain their general suitability for measuring
interaction affinities and kinetics, we determined that their intrinsic
affinity (<i>K</i><sub>D</sub> = 190 μM) and association
constants (<i>k</i><sub>on</sub> = 500 M<sup>–1</sup> s<sup>–1</sup>, <i>k</i><sub>off</sub> = 0.2 s<sup>–1</sup>) are outside of the ranges typical for protein interactions.
The accuracy of NanoBiT was verified under defined biochemical conditions
using the previously characterized interaction between SME-1 β-lactamase
and a set of inhibitor binding proteins. In cells, NanoBiT fusions
to FRB/FKBP produced luminescence consistent with the linear characteristics
of NanoLuc. Response dynamics, evaluated using both protein kinase
A and β-arrestin-2, were rapid, reversible, and robust to temperature
(21–37 °C). Finally, NanoBiT provided a means to measure
pharmacology of kinase inhibitors known to induce the interaction
between BRAF and CRAF. Our results demonstrate that the intrinsic
properties of NanoBiT allow accurate representation of protein interactions
and that the reporter responds reliably and dynamically in cells
Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate
Bioluminescence methodologies have been extraordinarily
useful
due to their high sensitivity, broad dynamic range, and operational
simplicity. These capabilities have been realized largely through
incremental adaptations of native enzymes and substrates, originating
from luminous organisms of diverse evolutionary lineages. We engineered
both an enzyme and substrate in combination to create a novel bioluminescence
system capable of more efficient light emission with superior biochemical
and physical characteristics. Using a small luciferase subunit (19
kDa) from the deep sea shrimp <i>Oplophorus gracilirostris</i>, we have improved luminescence expression in mammalian cells ∼2.5
million-fold by merging optimization of protein structure with development
of a novel imidazopyrazinone substrate (furimazine). The new luciferase,
NanoLuc, produces glow-type luminescence (signal half-life >2 h)
with
a specific activity ∼150-fold greater than that of either firefly
(<i>Photinus pyralis</i>) or <i>Renilla</i> luciferases
similarly configured for glow-type assays. In mammalian cells, NanoLuc
shows no evidence of post-translational modifications or subcellular
partitioning. The enzyme exhibits high physical stability, retaining
activity with incubation up to 55 °C or in culture medium for
>15 h at 37 °C. As a genetic reporter, NanoLuc may be configured
for high sensitivity or for response dynamics by appending a degradation
sequence to reduce intracellular accumulation. Appending a signal
sequence allows NanoLuc to be exported to the culture medium, where
reporter expression can be measured without cell lysis. Fusion onto
other proteins allows luminescent assays of their metabolism or localization
within cells. Reporter quantitation is achievable even at very low
expression levels to facilitate more reliable coupling with endogenous
cellular processes
Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate
Bioluminescence methodologies have been extraordinarily
useful
due to their high sensitivity, broad dynamic range, and operational
simplicity. These capabilities have been realized largely through
incremental adaptations of native enzymes and substrates, originating
from luminous organisms of diverse evolutionary lineages. We engineered
both an enzyme and substrate in combination to create a novel bioluminescence
system capable of more efficient light emission with superior biochemical
and physical characteristics. Using a small luciferase subunit (19
kDa) from the deep sea shrimp <i>Oplophorus gracilirostris</i>, we have improved luminescence expression in mammalian cells ∼2.5
million-fold by merging optimization of protein structure with development
of a novel imidazopyrazinone substrate (furimazine). The new luciferase,
NanoLuc, produces glow-type luminescence (signal half-life >2 h)
with
a specific activity ∼150-fold greater than that of either firefly
(<i>Photinus pyralis</i>) or <i>Renilla</i> luciferases
similarly configured for glow-type assays. In mammalian cells, NanoLuc
shows no evidence of post-translational modifications or subcellular
partitioning. The enzyme exhibits high physical stability, retaining
activity with incubation up to 55 °C or in culture medium for
>15 h at 37 °C. As a genetic reporter, NanoLuc may be configured
for high sensitivity or for response dynamics by appending a degradation
sequence to reduce intracellular accumulation. Appending a signal
sequence allows NanoLuc to be exported to the culture medium, where
reporter expression can be measured without cell lysis. Fusion onto
other proteins allows luminescent assays of their metabolism or localization
within cells. Reporter quantitation is achievable even at very low
expression levels to facilitate more reliable coupling with endogenous
cellular processes
Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate
Bioluminescence methodologies have been extraordinarily
useful
due to their high sensitivity, broad dynamic range, and operational
simplicity. These capabilities have been realized largely through
incremental adaptations of native enzymes and substrates, originating
from luminous organisms of diverse evolutionary lineages. We engineered
both an enzyme and substrate in combination to create a novel bioluminescence
system capable of more efficient light emission with superior biochemical
and physical characteristics. Using a small luciferase subunit (19
kDa) from the deep sea shrimp <i>Oplophorus gracilirostris</i>, we have improved luminescence expression in mammalian cells ∼2.5
million-fold by merging optimization of protein structure with development
of a novel imidazopyrazinone substrate (furimazine). The new luciferase,
NanoLuc, produces glow-type luminescence (signal half-life >2 h)
with
a specific activity ∼150-fold greater than that of either firefly
(<i>Photinus pyralis</i>) or <i>Renilla</i> luciferases
similarly configured for glow-type assays. In mammalian cells, NanoLuc
shows no evidence of post-translational modifications or subcellular
partitioning. The enzyme exhibits high physical stability, retaining
activity with incubation up to 55 °C or in culture medium for
>15 h at 37 °C. As a genetic reporter, NanoLuc may be configured
for high sensitivity or for response dynamics by appending a degradation
sequence to reduce intracellular accumulation. Appending a signal
sequence allows NanoLuc to be exported to the culture medium, where
reporter expression can be measured without cell lysis. Fusion onto
other proteins allows luminescent assays of their metabolism or localization
within cells. Reporter quantitation is achievable even at very low
expression levels to facilitate more reliable coupling with endogenous
cellular processes
Validation of HTS hits.
<p>A) Bioluminescence activity of cells treated with MNS was measured at 12 hours post treatment and plotted as fold induction. Experiments were performed at least in triplicates (mean ± SEM). B) Representative western blots for Luciferase, cleaved Caspase 3 and PARP or β-Actin as loading control of D54 cells treated with (25 µM) MNS for 12 hrs. C) Bioluminescence activity of cells treated with increasing concentrations of CV3988 at 12 hours post treatment. Data are plotted as fold induction over values obtained from vehicle treated cells. Experiments were performed in triplicates (mean ± SEM). D and E). Bioluminescence activity was measured at various time points using 1833 (D) or D54 (E) cells treated with CV3988 (12.5 µM), Z-VAD (20 µM) or a combination of Z-VAD plus CV3988 for 24 hrs. Data are plotted as fold induction and experiments were performed in triplicates and plotted as mean ± SEM. F) Representative western blots of Luciferase, Caspase 3, PARP or β-actin were performed on lysates obtained from D54 cells. Cells were either treated with CV3988 (12.5 µM), pre-treated with Z-VAD (20 µM) or treated with Z-VAD and CV3988 for 12 hrs.</p
Assessing drug sensitivity of rare and transient cell populations.
<p>A) FACS analysis of dissociated D54 cells sorted into CD133<sup>+</sup> and CD133<sup>−</sup> populations, P3 represents the CD133 expressing cell population. B) to E) Bioluminescence assay of CD133<sup>+</sup> and CD133<sup>−</sup> sorted D54 cells incubated with 200 ng/ml TRAIL (B), 50 µM MNS (C), 50 µM MK886 (D) or 12.5 µM GW7647 (E). Bioluminescence was plotted as fold induction over values obtained from vehicle treated cells. Experiments were performed in triplicates and plotted as mean ± SEM. Paired t-test was performed for all experiments and * denotes p<0.05 value at indicated time points.</p
Transgenic reporter mice expressing Caspase 3/7 GloSensor.
<p>A) Schematic of the pCLEX Caspase 3/7 GloSensor transgene construct. B) Excision of the floxed EGFP-stop cassette when crossed with a Cre expressing mouse strain should result in tissue specific transcription of the reporter. C) Representative bioluminescence images of bi-transgenic (for the reporter and p48-Cre) or mono-transgenic (transgenic for the reporter in the absence of Cre) animals pre- and 30 hrs post-cerulein injection (75 ug/kg, total of 12 injections in 48 hrs). D) Quantification of BLI signal induction upon cerulein treatment. E) Representative bioluminescent and fluorescent (EGFP) ex-vivo images of pancreata from mono- or bi-transgenic animals. F) Representative bioluminescence images of bi-transgenic (right) or mono-transgic (left) animals.</p
High throughput screening for inducers Caspase 3/7.
<p>Glosensor expressing 1833 or D54 cells (A and B respectively) were used to screen a library of 1,280 pharmacologically active compounds (LOPAC). Fold induction of bioluminescence signal intensity over values obtained from vehicle treated cells was plotted at maximal induction (mean ± SEM).</p
Utility of Caspase 3/7 GloSensor for assessment of cell death in cells.
<p>A) Schematic of the Caspase 3/7 GloSensor reporter containing an N-terminus coding for the C-Luc domain (358–544) of luciferase and a C-terminus coding for the N-Luc domain (4–354) of luciferase and a adjoining sequence, DEVD, the Caspase 3/7 recognition sequence. B) The functional basis of the reporter, wherein Caspase 3/7 mediated cleavage at the DEVD sequence results in release of the luciferase peptides and reconstitution of the enzymatic activity and an increase in luminescence signal. C) Bioluminescence analysis of cells treated with 200 ng/ml TRAIL. Data is plotted as fold induction standardized to values obtained from vehicle treated cells. D) Western blot for Caspase 3 cleavage using D54 cells treated with TRAIL for 6 hrs. β-Actin was used to standardize loading. E) Bioluminescence analysis of D54 cells treated with varying concentrations (25–100 ng/ml) of an agonist anti-Fas antibody. Data is plotted as fold induction over values obtained from vehicle treated cells at every hour. F) Bioluminescence analysis of cells treated with a pan-Caspase inhibitor Z-VAD (20 µM), 50 µM Docetaxel or with Z-VAD and Docetaxel combined. Data is plotted as fold induction. Experiments were performed at least in triplicates and mean values were plotted ± SEM.</p