7,116 research outputs found

    Dynamic simulation of an electrorheological fluid

    Get PDF
    A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10^−4 to [infinity]. The effective viscosity of the suspension increases as Ma^−1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma^−1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected "snapshots" of the suspension microstructure. In particular, at small Ma, the suspension dynamics exhibit two distinct motions: a slow elastic-body-like deformation where electrostatic energy is stored, followed by a rapid microstructural rearrangement where energy is viscously dissipated. It is suggested that the observed dynamic yield stress is associated with these dynamics

    Cosmic Censorship: As Strong As Ever

    Get PDF
    Spacetimes which have been considered counter-examples to strong cosmic censorship are revisited. We demonstrate the classical instability of the Cauchy horizon inside charged black holes embedded in de Sitter spacetime for all values of the physical parameters. The relevant modes which maintain the instability, in the regime which was previously considered stable, originate as outgoing modes near to the black hole event horizon. This same mechanism is also relevant for the instability of Cauchy horizons in other proposed counter-examples of strong cosmic censorship.Comment: 4 pages RevTeX style, 1 figure included using epsfi

    Homothetic Wyman Spacetimes

    Get PDF
    The time-dependent, spherically symmetric, Wyman sector of the Unified Field Theory is shown to be equivalent to a self-gravitating scalar field with a positive-definite, repulsive self-interaction potential. A homothetic symmetry is imposed on the fundamental tensor, and the resulting autonomous system is numerically integrated. Near the critical point (between the collapsing and non-collapsing spacetimes) the system displays an approximately periodic alternation between collapsing and dispersive epochs.Comment: 15 pages with 6 figures; requires amsart, amssymb, amsmath, graphicx; formatted for publication in Int. J. Mod. Phys.

    Price Discovery and the Accuracy of Consolidated Data Feeds in the U.S. Equity Markets

    Full text link
    Both the scientific community and the popular press have paid much attention to the speed of the Securities Information Processor, the data feed consolidating all trades and quotes across the US stock market. Rather than the speed of the Securities Information Processor, or SIP, we focus here on its accuracy. Relying on Trade and Quote data, we provide various measures of SIP latency relative to high-speed data feeds between exchanges, known as direct feeds. We use first differences to highlight not only the divergence between the direct feeds and the SIP, but also the fundamental inaccuracy of the SIP. We find that as many as 60 percent or more of trades are reported out of sequence for stocks with high trade volume, therefore skewing simple measures such as returns. While not yet definitive, this analysis supports our preliminary conclusion that the underlying infrastructure of the SIP is currently unable to keep pace with the trading activity in today's stock market.Comment: 18 pages, 20 figures, 2 table

    Stability of degenerate Cauchy horizons in black hole spacetimes

    Get PDF
    In the multihorizon black hole spacetimes, it is possible that there are degenerate Cauchy horizons with vanishing surface gravities. We investigate the stability of the degenerate Cauchy horizon in black hole spacetimes. Despite the asymptotic behavior of spacetimes (flat, anti-de Sitter, or de Sitter), we find that the Cauchy horizon is stable against the classical perturbations, but unstable quantum mechanically.Comment: Revtex, 4 pages, no figures, references adde

    Complete Set of Polarization Transfer Observables for the 12C(p,n)^{12}{\rm C}(p,n) Reaction at 296 MeV and 0^{\circ}

    Full text link
    A complete set of polarization transfer observables has been measured for the 12C(p,n)^{12}{\rm C}(p,n) reaction at Tp=296MeVT_p=296 {\rm MeV} and θlab=0\theta_{\rm lab}=0^{\circ}. The total spin transfer Σ(0)\Sigma(0^{\circ}) and the observable f1f_1 deduced from the measured polarization transfer observables indicate that the spin--dipole resonance at Ex7MeVE_x \simeq 7 {\rm MeV} has greater 22^- strength than 11^- strength, which is consistent with recent experimental and theoretical studies. The results also indicate a predominance of the spin-flip and unnatural-parity transition strength in the continuum. The exchange tensor interaction at a large momentum transfer of Q3.6fm1Q \simeq 3.6 {\rm fm}^{-1} is discussed.Comment: 4 pages, 4 figure

    Comparisons of binary black hole merger waveforms

    Get PDF
    This a particularly exciting time for gravitational wave physics. Ground-based gravitational wave detectors are now operating at a sensitivity such that gravitational radiation may soon be directly detected, and recently several groups have independently made significant breakthroughs that have finally enabled numerical relativists to solve the Einstein field equations for coalescing black-hole binaries, a key source of gravitational radiation. The numerical relativity community is now in the position to begin providing simulated merger waveforms for use by the data analysis community, and it is therefore very important that we provide ways to validate the results produced by various numerical approaches. Here, we present a simple comparison of the waveforms produced by two very different, but equally successful approaches--the generalized harmonic gauge and the moving puncture methods. We compare waveforms of equal-mass black hole mergers with minimal or vanishing spins. The results show exceptional agreement for the final burst of radiation, with some differences attributable to small spins on the black holes in one case.Comment: Revtex 4, 5 pages. Published versio

    Rate of diffusion-limited reactions in dispersions of spherical traps via multipole scattering

    Get PDF
    The effective reaction rate is calculated for a random array of reactive, stationary spherical traps in a medium containing a highly mobile reactant. Multipole scattering up to the quadrupole level, properly accounting for the conditionally convergent long-range interactions, plus direct addition of exact two-body interactions is employed. It is found that the addition of two-body interactions has a negligible effect on the effective reaction rates computed, in contrast to the case of the effective conductivity. Our results closely match the random walker simulation results of Lee, Kim, Miller, and Torquato [Phys. Rev. B 39, 11833 (1989)] up to 30% trap volume fraction, after which they underpredict the effective reaction rate. To accurately compute the effective reaction rate at high volume fractions, higher order many-body multipole interactions are required

    Diffusion-limited aggregation as branched growth

    Full text link
    I present a first-principles theory of diffusion-limited aggregation in two dimensions. A renormalized mean-field approximation gives the form of the unstable manifold for branch competition, following the method of Halsey and Leibig [Phys. Rev. A {\bf 46}, 7793 (1992)]. This leads to a result for the cluster dimensionality, D \approx 1.66, which is close to numerically obtained values. In addition, the multifractal exponent \tau(3) = D in this theory, in agreement with a proposed `electrostatic' scaling law.Comment: 13 pages, one figure not included (available by request, by ordinary mail), Plain Te
    corecore