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The elective reaction rate is calculated for a random array of reactive, stationary spherical 
traps in a medium containing a highly mobile reactant. Multipole scattering up to the 
quadrupole level, properly accounting for the conditionally convergent long-range 
interactions, plus direct addition of exact two-body interactions is employed. It is found that 
the addition of two-body interactions has a negligible effect on the effective reaction 
rates computed, in contrast to the case of the effective conductivity. Our results closely 
match the random walker simulation results of Lee, Kim, Miller, and Torquato [Phys. Rev. 
B 39, 11833 (1989)] up to 30% trap volume fraction, after which they underpredict 
the effective reaction rate. To accurately compute the effective reaction rate at high volume 
fractions, higher order many-body multipole. interactions are required. 

I. INTRODUCTION 

Diffusion-limited reactions are common to many ki- 
netic systems including suspension polymerization, growth 
of aerosol or colloidal particles, and the combustion of 
liquid drops, to name only a few. In these systems, the 
effective reaction rate is essentially determined by the time 
scale for the reacting species to diffuse to one another, 
rather than the time scale for the species to overcome an 
activation energy barrier. Typically, one of the reacting 
species is much larger and less mobile than the other reac- 
tant, for example, as in the case of the suspended polymer 
and reactive monomer. In these situations one of the reac- 
tants is effectively a static trap, and the time scale is deter- 
mined by the mobile reactant diffusion coefficient. The con- 
centration of the traps, however, also- influences the 
effective reaction rate because of the competition among 
them for the mobile reactant. It is-our aim to determine the 
effective reaction rate for spherical traps over a wide range 
of sphere volume fractions for random and periodic sys- 
tems. 

To determine the effective reaction rate one needs the 
relationship (ratio) of the average flux into a trap to the 
average mobile reactant concentration. We have developed 
a method to directly determine this relationship in the con- 
text of electrostatics,’ which is mathematically analogous 
to the problem at hand. The method is based upon multi- 
pole scattering and properly handling the long-ranged, 
conditionally convergent interactions among an infinite 
collection of particles. The method can be used for both 
random and nonrandom dispersions. 

Smoluchowsk? first computed the infinite dilution or 
noninteracting traps effective reaction rate by considering a 
single spherical particle in an unbounded fluid. In the last 
15 years a great deal of effort has been devoted to include 
the etfects of interactions among the traps. Lebenhaft and 
Kapra13 first used a monopole expansion for spheres on 
simple and face-centered-cubic lattices. They quantita- 
tively determined the correct cl/3 scaling (where c is the 
trap volume fraction ) for the first correction to the rate 

constant. Their results, however, incorrectly show the ef- 
fective reaction rate diverging at c=O. 17, a-physically un- 
reasonable result. As we shall show, the divergence is due 
to the neglect of the average irreducible quadrupole and 
the source distribution in the fluid phase necessary for a 
steady-state formulation of the problem. Recently, Venema 
and Bedeaux4 have computed the exact effective reaction- 
rate for the cubic lattices using a spherical multipole ex- 
pansion. At closest packing they found up to 50 moments 
were required to achieve accuracy to five significant figures. 

Felderhof and Deutch’ used the multipole approach 
through the dipole level with two-particle ensemble aver- 
aging to determine the first correction to Smoluchowski’s 
equation for the random dispersion of spherical particles. 
Most notably, they found the reaction rate scales as c”~ 
rather than cl/3 as seen in periodic systems. The cl” cor- 
rection can also be found by determining the flux into a 
single reactive sphere in the electrostatic analog of a Brink- 
man medium. Muthumakar and Cukier6 extended this 
work to include higher moments but for penetrable 
spheres. Muthumukar7 has also developed an effective me- 
dium theory for random systems. 

Recently, direct numerical simulations have been used 
to determine the effective reaction rate for infinite systems 
of spherical sinks. Lee, Kim, Miller, and Torquato’ and 
Zheng and Chiewg calculate the reaction rate as the inverse 
of the average time for tracer particles representing the 
reactant to randomly walk to one of many randomly 
placed static traps. The arrival times are averaged over a 
number of initial starting positions and trap configurations. 
Both research groups’ results compare quite well and are 
consistent with the lower bounds established by Tor- 
quato.” Miller and Torquato” have performed similar nu- 
merical simulations for suspensions of bidispersed traps. 

In this paper we shall use our multipole scattering 
method on infinite random dispersions of spherical traps. 
Here, we shall only employ up to the quadrupoles in the 
multipole expansion but shall also directly include the ex- 
act near-field two-body interactions to see if this method is 
as successful for computing the effective reaction rate as it 
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has been for computing the conductivity.’ In Sec. II we 
briefly outline the method and determine explicitly the 
form of the lower order corrections for cubic lattices. In 
Sec. III we apply the method to infinite, random disper- 
sions modeled as periodically replicated cells of Monte 
Carlo generated configurations of a finite number of 
spheres. We then compare our results to some of the above 
referenced work and to Brinkman-like effective medium 
theories. 

II. METHOD 

We formulate the problem as an infinite dispersion of 
static, nonpenetrable, spherical particles of radius a im- 
mersed in a matrix. A very fast reaction occurs on each 
sphere surface with a reactant whose concentration at a 
position x is denoted by 4(x>. The reactant has diffusivity 
D in the matrix phase and Dp in the particle phase. Fur- 
ther, to ensure a steady state, there is some reactant source 
distributed throughout the suspension. The effective reac- 
tion rate is then defined as the ratio of the total reactant 
consumed per unit volume by the traps (or produced. per 
unit volume in the suspension) to the suspension average 
concentration of the- reactant. The average rate of con- 
sumption of reactant P is thus given by r = .k,, ($)n, 
where k,, is the effective reaction rate, (4) is the volume 
average concentration of the mobile reactant, and n is the 
number density of particle traps. 

Effectively, we must solve Poisson’s equation in the 
matrix and particle phases with the usual continuity of 
concentration and flux at the particle surfaces. We need, 
however, only the average particle flux and the average 
concentration rather than the detailed concentration field. 
Because the Poisson equation is linear, there exists the ex- 
act relationship 

(;)$g Z:)*( YG) (1) 

among N particles. The vectors q, S, @, and G contain the 
N particle charges, the 3N components of the particle di- 
poles, the N particle relative concentrations at each particle 
reference point, Rp [4(Rp) - ($( Rp) )], and 3N compo- 
nents of the average potential gradient, respectively. The 
matrix in Eq. ( 1) is called the capacitance matrix C in 
electrostatics and is a geometric quantity dependent only 
upon the trap configuration, D/D, and the form of the 
source distribution. 

Here the particles will be assumed to have a’uniform 
concentration of zero at their surfaces, so if the reactant 
source is distributed only in the matrix phase the particles 
are equivalent to electrostatic perfect conductors. If reac- 
tant is also distributed in the particle phase, and if 
DJD>l, the particles are also equivalent to perfect con- 
ductors. The capacitance matrix’s submatrices relate the 
charge to the potential C!@, the charge to the gradient C!&, 
etc. The effective reaction rate is then the suspension aver- 
age value of the C,* coupling when there is no potential 

gradient. In this case the effective rate constant, nondimen- 
sionalized by Smoluchowski’s dilute trap rate constant,’ 
k, = h-Da, is 

4, V&P> 
-zy=4?rDa’ (21 

In our method, which is described elsewhere,’ we ap- 
proximate the capacitance matrix by 

CZM-‘+C~~-C;~ (3) 

The “potential” matrix M-l in its exact form is the in- 
verse of the capacitance matrix. Here, we form an approx- 
imation to the potential matrix from a moment expansion 
about each particle derived from the integral representa- 
tion of Poisson’s equation. The moment-expansion can be 
carried out to any level. If the expansion is done up to the 
quadrupzle level, for example, the so-called grand potential 
matrix ,& can be written as 

cf, 

( ),( 

f$q g*s $OQ 
- -G = YGq FGS ~GQ . 

)i) 
; 14) 
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where VG is the gradient of the average potential gradient 
and Q is the vector containing the N particle quadrupoles. 
For an unbounded statistically homogeneous suspension of 
particles VG = 0 because it is inconsistent to have a qua- 
dratic concentration field in the absence of boundaries. 
Since VG = 0, we can solve for Q in terms of q and S and 
form an approximate potential matrix M. If additional mo- 
ments are included, they can also be solved for in terms of 
q and S since all higher.derivatives of the gradient must 
vanish for an infinite system of particles, and their effects 
can be included into M - *. 

The accuracy of the potential matrix, and hence, the 
accuracy of the potential invert depend upon the number 
of moments retained in its formulation. The inversion of 
the potential matrix captures the many-body far-field par- 
ticle interactions since the inversion is equivalent to a 
many-body method of reflections solution. Note, care must 
be taken in forming the potential matrix for an infinite 
suspension because the particle interactions are long- 
ranged, giving rise to convergence difficulties (see Ref. 1 
for details). 

Recall we are considering particles analogous to per- 
fect conductors in the electrostatic problem. If two nearby 
particles have different concentrations the flux between 
them is logarithmically singular in gap width. To include 
these near-field effects all the moments would have to be 
included in the potential formulation. Rather than do this, 
the near-field interactions are included directly by addition 
of the exact two-body capacitance matrix; CZ6, less the 
far-field two-body capacitance matrix, Cjmb;, already in- 
cluded in the potential invert. The two-body capacitance 
matrices contain all the interactions between two particles 
alone in the matrix. The method proves very accurate for 
computing effective.conductivities, which are determined 
by the average particle dipoles, and we wish to discover 
how helpful this approach is for the present problem. 

J. Chem. Phys., Vol. 94, No. 1, 1 January 1991 

Downloaded 13 Jan 2006 to 131.215.225.172. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Ignoring for the moment the addition of two-body in- 
teractions and using the moment scattering only, -we may 
derive analytically the effective reaction rate for cubic ar- 
rays up to the quadrupole level. From Bonnecaze and 
Brady’ equation (37), the relative concentration of a 
sphere at its reference point is given by 

WCJ - (W%J) 
2 

=&+!!f&?+& 
=( 

1 

B 
40; ++v,; 

ifQ#‘,,V,,;) -+-jj$(q)t 

+ncs,.V~~+~n(a,:Vv,5 dV. 
1 

The first term on. the right-hand side contains the sphere 
self-term and the second term includes both the constant 
source distribution and the average irreducible quadrupole 
for the suspension. The summations are the moment ex- 
pansion through the quadrupole level, and the integrals 
over all space V contain the effect of the average charge, 
dipole and quadrupole. It is these integrals that insure an 
absolutely convergent concentration difference since the di- 
verging sums exactly cancel with growing integrals for 
large r. Similar equations can be written for G and VG for 
any particle Q. Now for cubic lattices, the sphere quadru- 
pole is zero due to the lattice symmetry, and further, there 
is no coupling between the concentration and dipoles, 
again because of cubic symmetry. So up to the quadrupole 
level the relative potential for a sphere in a cubic lattice is 
given by 

4(&A - WJ)=& 1 +c+ 5 ; f - V2$ - n4n-a($ - (f#~)) =O. (10) 

Solving Eq. ( 10) with the aforementioned boundary con- 
ditions, we find the effective reaction rate is given by 

(6) 

k 
.$=I+ &, (11’) 

s 
where qp and (q) have been replaced by qa since all spheres 
are equivalent in the lattice. Using the method of Ewald 
sums, the sum and integral in Eq. (6) can be evaluated to 
yield 

W,) - (4(R,)) =&( 1 - 312~~‘~ + c), (7) 

where m is a constant and computed to be 1.7601, 1.7918, 
and 1.79 19 for simple, body-centered, and face-centered- 
cubic lattices, respectively. Because we assume the particle 
traps are analogous to perfect conductors with zero poten- 
tial on their surfaces, 4(R,) = 0, and therefore, the effec- 
tive reaction rate given by Eq. (2) is then 

&A. 1 -= 
k, 1 -- mc1’3 + c’ 
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Lebenhaft and Kapral’s result does not include the c term 
in the denominator of Eq. (8) since they did not include 
the (q) term due to the irreducible quadrupole and the 
source distribution in the matrix phase in their analysis. 
Neglecting this term results in an aphysical divergence at 
c=O. 17. Venema and Bedeaux have continued the expan- 
sion in spherical harmonics to include in Eq. (8) addi- 
tional terms of increasing powers of c in the denominator. 
Also, many investigators have considered the problem with 
the source distribution in the matrix phase only, in which 
case Eq. (8) is multiplied by ( 1 - c). Within the context 
of our method, this can be shown explicitly after some 
tedious manipulations and is physically reasonable since 
the problem is linear and must scale with the source 
strength; hence, if the source strength is reduced by 
( 1 - c), so must the effective reaction rate. 

The above results for periodic arrays show the known 
O(C”~) scaling of the first correction to the Smoluchowski 
result for small c. For a random medium the first correc- 
tion to the rate is O(C”~) as can be shown by solving the 
electrostatic analog of the Brinkman equation for. a single 
sphere with reactant concentration 4 vanishing at its sur- 
face and I$ = (c#J> far from the sphere. The Brinkman-like 
equation is motivated physically as follows: =The steady- 
state reaction-diffusion equation is given by 

DV2# + r=O, (9) 

where P is the rate of production per unit volume of the 
species. The total flux into an isolated sphere in a matrix is 
given by q = 4s-Da ((p. F (4) ) , where here 4, is the concen- 
tration of the diffusing species at the sphere’s surface. If we 
imagine our Brinkman-like effective medium as a collec- 
tion of spheres distributed randomly in space, the rate of 
production per unit volume is - n4rrDa (4 - (4) > . There- 
fore, the ,Brinkman-like equation is 

which is precisely Felderhof and Deutch’s first correction 
showing the O(c”*) scaling. 

This Brinkman-like effective medium theory can be 
modified further. to be “self-consistent” and include the 
effective diffusivity of the diffusing species in the disper- 
sion. In this case we write the Brinkman-like equation as 

DeJ2$ - k,,n(4 - (4)) =O, (12) 

where Deff is the effective diffusivity for a random array of 
perfect- spherical conductors and is a function of the trap 
volume fraction; and k,, is the sought after reaction rate. 
Solving Eq. ( 12) we find the implicit relation for the reac- 
tion rate, 

up to the quadrupole level. This is consistent with the re- 
sults of Lebenhaft and Kapral and Venema and Bedeaux. 

k eff 3hd’e~ De, .A= 
ks F+F: (13) 
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FJG. 1. Effective reaction rate, nondimensionalized with the dilute, 
Smoluchowski result of 4d~ vs volume fraction of spherical traps. The 
closed triangles are our simulation results, the open triangles are the 
random walker results of Lee et al., the lower dashed line is the lower 
bound of Torquato, the solid line is the theoretical result of Felderhof and 
Deutch, and the upper dotted line is reaction-rate computed with the 
self-consistent Brinkman-like effective medium theory [Eq. (13)]. All re- 
sults here assume that a constant source distribution exists in the matrix 
phase only, except for the results of Felderhof and Deutch where it is not 
clear what assumptions were made to insure a steady state. 

III. RESULTS FOR RANDOM DISPERSIONS. OF 
SPHERICAL TRAPS 

Several simulations were performed to determine the 
effective reaction rate for a random suspension of spherical 
traps. To simulate an infinite collection of traps, a finite 
number of spheres were randomly placed in a cubic box via 
Monte Carlo methods, and the box was periodically repli- 
cated throughout all space. Previous work has found that 
32 particles per cell is sufficient to obtain results indepen- 
dent of cell size.12 The mobility matrix was formed as de- 
scribed earlier and elsewhere taking advantage of the peri- 
odicity. Simulations were performed with and without the 
addition of the near-field two-body interactions. The re- 
sults are illustrated in Fig. 1 for a constant source distri- 
bution in the matrix phase only. Recall for a constant 
source distribution in both the-particle and matrix phases, 
these effective reaction rates must be divided by ( 1 - c). 

The nonanalytic c 1’2 dependence at low volume frac- 
tions of the effective reaction rate constant is apparent in 
our results as observed in the decreasing slope up to 10 
vol %. The computed rate constant, however, exhibits a 
maximum at around c = 0.4, which is not a physically rea- 
sonable result. The rate constant should increase with the 
volume fraction of traps because the reactant will have less 
distance to diffuse in order to react with the one of the 
traps. A maximum also occurs in our analytic result for the 
cubic lattices. Evidently many multipoles are necessary to 
compute the reaction rate constant accurately. The addi- 
tion of two-body interactions produced negligible changes 

in the effective reaction rate constant; the two sets of re- 
sults are indistinguishable. 

In addition to our simulation results, we also plot the 
results of the random walker simulations of Lee et al., the 
lower bound of Torquato, and the theoretical results of 
Felderhof and Deutch. Our limited multipole expansion 
matches Lee et al.3 simulations up to c = 0.3, after which 
it grossly underpredicts the effective reaction rate, indeed 
dropping below the lower bound for ~~0.45. Our simula- 
tion results compare quite well to the results of Felderhof 
and Deutch up to about c = 0.08, again indicating that the 
cl/2 dependence is properly captured at low volume frac- 
tions with our method. Even at modest volume fractions 
Felderhof and Deutch’s result seem to over predict the 
reaction constant predicted by both our and Lee et al’s 
results. 

The reaction rate computed from the Brinkman-like 
effective medium equation (13) using known results for 
Derr" is also shown in Fig. 1. These results compare quite 
well to those of Lee et al. for small and large volume frac- 
tions, although they are off by as much as 25% at inter- 
mediate values. The use of such an effective medium equa- 
tion can perhaps provide a reasonable estimate of the 
reaction rate for nonspherical particles if effective conduc- 
tivity data is available. 

Based upon the results presented here and Venema and 
Bedeaux’s work, it would appear that a very large number 
of many-body multipoles must be included to accurately 
compute the effective reaction rate. As mentioned earlier, 
Venema and Bedeaux reported 50 spherical moments were 
needed to compute the reaction rate for an fee lattice ac- 
curate to five significant figures. Venemat3 also found that 
when calculating the reaction rate for a regular array of 
cylinders, the rate would alternately exhibit a maximum or 
no maximum depending upon if an odd or even number of 
moments were used in the multipole scattering; this is con- 
sistent with our results. Unfortunately, adding exact near- 
field two-body interactions, which is very effective for ap- 
proximating the neglected higher order moments for the 
effective conductivity problem, does not help in this case. 
Since there is no relative potential or concentration differ- 
ence between particles, there is no near-field singular be- 
havior dominating the effect of the neglected higher mo- 
ments. It appears, therefore, that if a multipole scattering 
method is used to compute the effective reaction rate, 
many moments must be included in the formulation. 
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