8,800 research outputs found

    Breast Cancer: Modelling and Detection

    Get PDF
    This paper reviews a number of the mathematical models used in cancer modelling and then chooses a specific cancer, breast carcinoma, to illustrate how the modelling can be used in aiding detection. We then discuss mathematical models that underpin mammographic image analysis, which complements models of tumour growth and facilitates diagnosis and treatment of cancer. Mammographic images are notoriously difficult to interpret, and we give an overview of the primary image enhancement technologies that have been introduced, before focusing on a more detailed description of some of our own recent work on the use of physics-based modelling in mammography. This theoretical approach to image analysis yields a wealth of information that could be incorporated into the mathematical models, and we conclude by describing how current mathematical models might be enhanced by use of this information, and how these models in turn will help to meet some of the major challenges in cancer detection

    A nonlinear detection algorithm for periodic signals in gravitational wave detectors

    Get PDF
    We present an algorithm for the detection of periodic sources of gravitational waves with interferometric detectors that is based on a special symmetry of the problem: the contributions to the phase modulation of the signal from the earth rotation are exactly equal and opposite at any two instants of time separated by half a sidereal day; the corresponding is true for the contributions from the earth orbital motion for half a sidereal year, assuming a circular orbit. The addition of phases through multiplications of the shifted time series gives a demodulated signal; specific attention is given to the reduction of noise mixing resulting from these multiplications. We discuss the statistics of this algorithm for all-sky searches (which include a parameterization of the source spin-down), in particular its optimal sensitivity as a function of required computational power. Two specific examples of all-sky searches (broad-band and narrow-band) are explored numerically, and their performances are compared with the stack-slide technique (P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Matching of the continuous gravitational wave in an all sky search

    Get PDF
    We investigate the matching of continuous gravitational wave (CGW) signals in an all sky search with reference to Earth based laser interferometric detectors. We consider the source location as the parameters of the signal manifold and templates corresponding to different source locations. It has been found that the matching of signals from locations in the sky that differ in their co-latitude and longitude by π\pi radians decreases with source frequency. We have also made an analysis with the other parameters affecting the symmetries. We observe that it may not be relevant to take care of the symmetries in the sky locations for the search of CGW from the output of LIGO-I, GEO600 and TAMA detectors.Comment: 16 pages, 7 figures, 3 Tables, To appear in Int. J. Mod. Phys.

    Caring for continence in stroke care settings: a qualitative study of patients’ and staff perspectives on the implementation of a new continence care intervention

    Get PDF
    Objectives: Investigate the perspectives of patients and nursing staff on the implementation of an augmented continence care intervention after stroke. Design: Qualitative data were elicited during semi-structured interviews with patients (n = 15) and staff (14 nurses; nine nursing assistants) and analysed using thematic analysis. Setting: Mixed acute and rehabilitation stroke ward. Participants: Stroke patients and nursing staff that experienced an enhanced continence care intervention. Results: Four themes emerged from patients’ interviews describing: (a) challenges communicating about continence (initiating conversations and information exchange); (b) mixed perceptions of continence care; (c) ambiguity of focus between mobility and continence issues; and (d) inconsistent involvement in continence care decision making. Patients’ perceptions reflected the severity of their urinary incontinence. Staff described changes in: (i) knowledge as a consequence of specialist training; (ii) continence interventions (including the development of nurse-led initiatives to reduce the incidence of unnecessary catheterisation among patients admitted to their ward); (iii) changes in attitude towards continence from containment approaches to continence rehabilitation; and (iv) the challenges of providing continence care within a stroke care context including limitations in access to continence care equipment or products, and institutional attitudes towards continence. Conclusion: Patients (particularly those with severe urinary incontinence) described challenges communicating about and involvement in continence care decisions. In contrast, nurses described improved continence knowledge, attitudes and confidence alongside a shift from containment to rehabilitative approaches. Contextual components including care from point of hospital admission, equipment accessibility and interdisciplinary approaches were perceived as important factors to enhancing continence care

    Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search

    Get PDF
    We develop a set of data analysis tools for a realistic all-sky search for continuous gravitational-wave signals. The methods that we present apply to data from both the resonant bar detectors that are currently in operation and the laser interferometric detectors that are in the final stages of construction and commissioning. We show that with our techniques we shall be able to perform an all-sky 2-day long coherent search of the narrow-band data from the resonant bar EXPLORER with no loss of signals with the dimensionless amplitude greater than 2.8×10232.8\times10^{-23}.Comment: REVTeX, 26 pages, 1 figure, submitted to Phys. Rev.

    Are HIV smartphone apps and online interventions fit for purpose?

    Get PDF
    Sexual health is an under-explored area of Human-Computer Interaction (HCI), particularly sexually transmitted infections such as HIV. Due to the stigma associated with these infections, people are often motivated to seek information online. With the rise of smartphone and web apps, there is enormous potential for technology to provide easily accessible information and resources. However, using online information raises important concerns about the trustworthiness of these resources and whether they are fit for purpose. We conducted a review of smartphone and web apps to investigate the landscape of currently available online apps and whether they meet the diverse needs of people seeking information on HIV online. Our functionality review revealed that existing technology interventions have a one-size-fits-all approach and do not support the breadth and complexity of HIV-related support needs. We argue that technology-based interventions need to signpost their offering and provide tailored support for different stages of HIV, including prevention, testing, diagnosis and management

    Do naked singularities generically occur in generalized theories of gravity?

    Get PDF
    A new mechanism for causing naked singularities is found in an effective superstring theory. We investigate the gravitational collapse in a spherically symmetric Einstein-Maxwell-dilaton system in the presence of a pure cosmological constant "potential", where the system has no static black hole solution. We show that once gravitational collapse occurs in the system, naked singularities necessarily appear in the sense that the field equations break down in the domain of outer communications. This suggests that in generalized theories of gravity, the non-minimally coupled fields generically cause naked singularities in the process of gravitational collapse if the system has no static or stationary black hole solution.Comment: 4 pages including 2 eps figures, to be published in Physical Review Letter

    Broadening public participation in systematic reviews : a case example involving young people in two configurative reviews

    Get PDF
    Background: Arguments supporting the involvement of users in research have even more weight when involving the public in systematic reviews of research. We aimed to explore the potential for public involvement in systematic reviews of observational and qualitative studies. Methods: Two consultative workshops were carried out with a group of young people (YP) aged 12–17 years to examine two ongoing reviews about obesity: one about children's views and one on the link between obesity and educational attainment. YP were invited to comment on the credibility of themes, to propose elements of interventions, to suggest links between educational attainment and obesity and to comment on their plausibility. Results: Researchers had more confidence in review findings, after checking that themes identified as important by YP were emphasised appropriately. Researchers were able to use factors linking obesity and attainment identified as important by YP to identify limitations in the scope of extant research. Conclusion: Consultative workshops helped researchers draw on the perspectives of YP when interpreting and reflecting upon two systematic reviews. Involving users in judging synthesis credibility and identifying concepts was easier than involving them in interpreting findings. Involvement activities for reviews should be designed with review stage, purpose and group in mind

    Data analysis of gravitational-wave signals from spinning neutron stars. II. Accuracy of estimation of parameters

    Full text link
    We examine the accuracy of estimation of parameters of the gravitational-wave signals from spinning neutron stars that can be achieved from observations by Earth-based laser interferometers. We consider a model of the signal consisting of two narrowband components and including both phase and amplitude modulation. We calculate approximate values of the rms errors of the parameter estimators using the Fisher information matrix. We carry out extensive Monte Carlo simulations and obtain cumulative distribution functions of rms errors of astrophysically interesting parameters: amplitude of the signal, wobble angle, position of the source in the sky, frequency, and spindown coefficients. We consider both all-sky searches and directed searches. We also examine the possibility of determination of neutron star proper motion. We perform simulations for all laser-interferometric detectors that are currently under construction and for several possible lengths of the observation time and sizes of the parameter space. We find that observations of continuous gravitational-wave signals from neutron stars by laser-interferometric detectors will provide a very accurate information about their astrophysical properties. We derive several simplified models of the signal that can be used in the theoretical investigations of the data analysis schemes independently of the physical mechanisms generating the gravitational-wave signal.Comment: LaTeX, 34 pages, 15 figures, submitted to Phys. Rev.

    An approximate binary-black-hole metric

    Get PDF
    An approximate solution to Einstein's equations representing two widely-separated non-rotating black holes in a circular orbit is constructed by matching a post-Newtonian metric to two perturbed Schwarzschild metrics. The spacetime metric is presented in a single coordinate system valid up to the apparent horizons of the black holes. This metric could be useful in numerical simulations of binary black holes. Initial data extracted from this metric have the advantages of being linked to the early inspiral phase of the binary system, and of not containing spurious gravitational waves.Comment: 20 pages, 1 figure; some changes in Sec. IV B,C and Sec.
    corecore