9,435 research outputs found

    Force on a sphere via the generalized reciprocal theorem

    Get PDF
    An approach based on the generalized reciprocal theorem is presented to derive the well-known result for the drag force exerted on a rigid sphere translating in a viscous fluid in an arbitrary manner. The use of generalized reciprocal theorem allows one to bypass the calculation of stress distribution over the particle surface in order to compute the force

    Hydrodynamic stress on fractal aggregates of spheres

    Get PDF
    We calculate the average hydrodynamic stress on fractal aggregates of spheres using Stokesian dynamics. We find that for fractal aggregates of force-free particles, the stress does not grow as the cube of the radius of gyration, but rather as the number of particles in the aggregate. This behavior is only found for random aggregates of force-free particles held together by hydrodynamic lubrication forces. The stress on aggregates of particles rigidly connected by interparticle forces grows as the radius of gyration cubed. We explain this behavior by examining the transmission of the tension along connecting lines in an aggregate and use the concept of a persistance length in order to characterize this stress transmission within an aggregate

    Cosmic Censorship: As Strong As Ever

    Get PDF
    Spacetimes which have been considered counter-examples to strong cosmic censorship are revisited. We demonstrate the classical instability of the Cauchy horizon inside charged black holes embedded in de Sitter spacetime for all values of the physical parameters. The relevant modes which maintain the instability, in the regime which was previously considered stable, originate as outgoing modes near to the black hole event horizon. This same mechanism is also relevant for the instability of Cauchy horizons in other proposed counter-examples of strong cosmic censorship.Comment: 4 pages RevTeX style, 1 figure included using epsfi

    Cauchy horizon singularity without mass inflation

    Full text link
    A perturbed Reissner-Nordstr\"om-de Sitter solution is used to emphasize the nature of the singularity along the Cauchy horizon of a charged spherically symmetric black hole. For these solutions, conditions may prevail under which the mass function is bounded and yet the curvature scalar RαβγδRαβγδR_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta} diverges.Comment: typeset in RevTex, 13 page

    Stability of degenerate Cauchy horizons in black hole spacetimes

    Get PDF
    In the multihorizon black hole spacetimes, it is possible that there are degenerate Cauchy horizons with vanishing surface gravities. We investigate the stability of the degenerate Cauchy horizon in black hole spacetimes. Despite the asymptotic behavior of spacetimes (flat, anti-de Sitter, or de Sitter), we find that the Cauchy horizon is stable against the classical perturbations, but unstable quantum mechanically.Comment: Revtex, 4 pages, no figures, references adde

    Waves in active matter: The transition from ballistic to diffusive behavior

    Get PDF
    We highlight the unique wavelike character observed in the relaxation dynamics of active systems via a Smoluchowski based theoretical framework and Brownian dynamic simulations. Persistent swimming motion results in wavelike dynamics until the advective swim displacements become sufficiently uncorrelated, at which point the motion becomes a random walk process characterized by a swim diffusivity, D^(swim) = U²₀τ_R/[d(d−1)], dependent on the speed of swimming U₀, reorientation time τ_R, and reorientation dimension d. This change in behavior is described by a telegraph equation, which governs the transition from ballistic wavelike motion to long-time diffusive motion. We study the relaxation of active Brownian particles from an instantaneous source, and provide an explanation for the nonmonotonicity observed in the intermediate scattering function. Using our simple kinetic model we provide the density distribution for the diffusion of active particles released from a line source as a function of time, position, and the ratio of the activity to thermal energy. We extend our analysis to include the effects of an external field on particle spreading to further understand how reorientation events in the active force vector affect relaxation. The strength of the applied external field is shown to be inversely proportional to the decay of the wavelike structure. Our theoretical description for the evolution of the number density agrees with Brownian dynamic simulation data

    Optimal Strategies for Sinusoidal Signal Detection

    Get PDF
    We derive and study optimal and nearly-optimal strategies for the detection of sinusoidal signals hidden in additive (Gaussian and non-Gaussian) noise. Such strategies are an essential part of algorithms for the detection of the gravitational Continuous Wave (CW) signals produced by pulsars. Optimal strategies are derived for the case where the signal phase is not known and the product of the signal frequency and the observation time is non-integral.Comment: 18 pages, REVTEX4, 7 figures, 2 table
    • …
    corecore