5,810 research outputs found

    On critical behaviour in gravitational collapse

    Full text link
    We give an approach to studying the critical behaviour that has been observed in numerical studies of gravitational collapse. These studies suggest, among other things, that black holes initially form with infinitesimal mass. We show generally how a black hole mass formula can be extracted from a transcendental equation. Using our approach, we give an explicit one parameter set of metrics that are asymptotically flat and describe the collapse of apriori unspecified but physical matter fields. The black hole mass formula obtained from this metric exhibits a mass gap - that is, at the onset of black hole formation, the mass is finite and non-zero.Comment: 11 pages, RevTex, 2 figures (available from VH

    Self-Similar Collapse of Scalar Field in Higher Dimensions

    Get PDF
    This paper constructs continuously self-similar solution of a spherically symmetric gravitational collapse of a scalar field in n dimensions. The qualitative behavior of these solutions is explained, and closed-form answers are provided where possible. Equivalence of scalar field couplings is used to show a way to generalize minimally coupled scalar field solutions to the model with general coupling.Comment: RevTex 3.1, 15 pages, 3 figures; references adde

    Black hole formation from massive scalar fields

    Get PDF
    It is shown that there exists a range of parameters in which gravitational collapse with a spherically symmetric massive scalar field can be treated as if it were collapsing dust. This implies a criterion for the formation of black holes depending on the size and mass of the initial field configuration and the mass of the scalar field.Comment: 11 pages, RevTeX, 3 eps figures. Submitted to Class. Quantum Gra

    Jamming transitions in a schematic model of suspension rheology

    Full text link
    We study the steady-state response to applied stress in a simple scalar model of sheared colloids. Our model is based on a schematic (F2) model of the glass transition, with a memory term that depends on both stress and shear rate. For suitable parameters, we find transitions from a fluid to a nonergodic, jammed state, showing zero flow rate in an interval of applied stress. Although the jammed state is a glass, we predict that jamming transitions have an analytical structure distinct from that of the conventional mode coupling glass transition. The static jamming transition we discuss is also distinct from hydrodynamic shear thickening.Comment: 7 pages; 3 figures; improved version with added references. Accepted for publication in Europhysics Letter

    A coherent triggered search for single spin compact binary coalescences in gravitational wave data

    Get PDF
    In this paper we present a method for conducting a coherent search for single spin compact binary coalescences in gravitational wave data and compare this search to the existing coincidence method for single spin searches. We propose a method to characterize the regions of the parameter space where the single spin search, both coincident and coherent, will increase detection efficiency over the existing non-precessing search. We also show example results of the coherent search on a stretch of data from LIGO's fourth science run but note that a set of signal based vetoes will be needed before this search can be run to try to make detections.Comment: 14 pages, 4 figure

    Stability of degenerate Cauchy horizons in black hole spacetimes

    Get PDF
    In the multihorizon black hole spacetimes, it is possible that there are degenerate Cauchy horizons with vanishing surface gravities. We investigate the stability of the degenerate Cauchy horizon in black hole spacetimes. Despite the asymptotic behavior of spacetimes (flat, anti-de Sitter, or de Sitter), we find that the Cauchy horizon is stable against the classical perturbations, but unstable quantum mechanically.Comment: Revtex, 4 pages, no figures, references adde

    Tidal Stabilization of Rigidly Rotating, Fully Relativistic Neutron Stars

    Get PDF
    It is shown analytically that an external tidal gravitational field increases the secular stability of a fully general relativistic, rigidly rotating neutron star that is near marginal stability, protecting it against gravitational collapse. This stabilization is shown to result from the simple fact that the energy ÎŽM(Q,R)\delta M(Q,R) required to raise a tide on such a star, divided by the square of the tide's quadrupole moment QQ, is a decreasing function of the star's radius RR, (d/dR)[ÎŽM(Q,R)/Q2]<0(d/dR)[\delta M(Q,R)/Q^2]<0 (where, as RR changes, the star's structure is changed in accord with the star's fundamental mode of radial oscillation). If (d/dR)[ÎŽM(Q,R)/Q2](d/dR)[\delta M(Q,R)/Q^2] were positive, the tidal coupling would destabilize the star. As an application, a rigidly rotating, marginally secularly stable neutron star in an inspiraling binary system will be protected against secular collapse, and against dynamical collapse, by tidal interaction with its companion. The ``local-asymptotic-rest-frame'' tools used in the analysis are somewhat unusual and may be powerful in other studies of neutron stars and black holes interacting with an external environment. As a byproduct of the analysis, in an appendix the influence of tidal interactions on mass-energy conservation is elucidated.Comment: Revtex, 10 pages, 2 figures; accepted for publication in Physical Review D. Revisions: Appendix rewritten to clarify how, in Newtonian gravitation theory, ambiguity in localization of energy makes interaction energy ambiguous but leaves work done on star by tidal gravity unambiguous. New footnote 1 and Refs. [11] and [19

    The central density of a neutron star is unaffected by a binary companion at linear order in Ό/R\mu/R

    Get PDF
    Recent numerical work by Wilson, Mathews, and Marronetti [J. R. Wilson, G. J. Mathews and P. Marronetti, Phys. Rev. D 54, 1317 (1996)] on the coalescence of massive binary neutron stars shows a striking instability as the stars come close together: Each star's central density increases by an amount proportional to 1/(orbital radius). This overwhelms any stabilizing effects of tidal coupling [which are proportional to 1/(orbital radius)^6] and causes the stars to collapse before they merge. Since the claimed increase of density scales with the stars' mass, it should also show up in a perturbation limit where a point particle of mass Ό\mu orbits a neutron star. We prove analytically that this does not happen; the neutron star's central density is unaffected by the companion's presence to linear order in Ό/R\mu/R. We show, further, that the density increase observed by Wilson et. al. could arise as a consequence of not faithfully maintaining boundary conditions.Comment: 3 pages, REVTeX, no figures, submitted to Phys Rev D as a Rapid Communicatio

    Binary-induced collapse of a compact, collisionless cluster

    Get PDF
    We improve and extend Shapiro's model of a relativistic, compact object which is stable in isolation but is driven dynamically unstable by the tidal field of a binary companion. Our compact object consists of a dense swarm of test particles moving in randomly-oriented, initially circular, relativistic orbits about a nonrotating black hole. The binary companion is a distant, slowly inspiraling point mass. The tidal field of the companion is treated as a small perturbation on the background Schwarzschild geometry near the hole; the resulting metric is determined by solving the perturbation equations of Regge and Wheeler and Zerilli in the quasi-static limit. The perturbed spacetime supports Bekenstein's conjecture that the horizon area of a near-equilibrium black hole is an adiabatic invariant. We follow the evolution of the system and confirm that gravitational collapse can be induced in a compact collisionless cluster by the tidal field of a binary companion.Comment: 9 Latex pages, 14 postscript figure
    • 

    corecore