2,345 research outputs found

    Numerical investigation of black hole interiors

    Get PDF
    Gravitational perturbations which are present in any realistic stellar collapse to a black hole, die off in the exterior of the hole, but experience an infinite blueshift in the interior. This is believed to lead to a slowly contracting lightlike scalar curvature singularity, characterized by a divergence of the hole's (quasi-local) mass function along the inner horizon. The region near the inner horizon is described to great accuracy by a plane wave spacetime. While Einstein's equations for this metric are still too complicated to be solved in closed form it is relatively simple to integrate them numerically. We find for generic regular initial data the predicted mass inflation type null singularity, rather than a spacelike singularity. It thus seems that mass inflation indeed represents a generic self-consistent picture of the black hole interior.Comment: 6 pages LaTeX, 3 eps figure

    Cauchy horizon singularity without mass inflation

    Full text link
    A perturbed Reissner-Nordstr\"om-de Sitter solution is used to emphasize the nature of the singularity along the Cauchy horizon of a charged spherically symmetric black hole. For these solutions, conditions may prevail under which the mass function is bounded and yet the curvature scalar RαβγδRαβγδR_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta} diverges.Comment: typeset in RevTex, 13 page

    The late-time singularity inside non-spherical black holes

    Full text link
    It was long believed that the singularity inside a realistic, rotating black hole must be spacelike. However, studies of the internal geometry of black holes indicate a more complicated structure is typical. While it seems likely that an observer falling into a black hole with the collapsing star encounters a crushing spacelike singularity, an observer falling in at late times generally reaches a null singularity which is vastly different in character to the standard Belinsky, Khalatnikov and Lifschitz (BKL) spacelike singularity. In the spirit of the classic work of BKL we present an asymptotic analysis of the null singularity inside a realistic black hole. Motivated by current understanding of spherical models, we argue that the Einstein equations reduce to a simple form in the neighborhood of the null singularity. The main results arising from this approach are demonstrated using an almost plane symmetric model. The analysis shows that the null singularity results from the blueshift of the late-time gravitational wave tail; the amplitude of these gravitational waves is taken to decay as an inverse power of advanced time as suggested by perturbation theory. The divergence of the Weyl curvature at the null singularity is dominated by the propagating modes of the gravitational field. The null singularity is weak in the sense that tidal distortion remains bounded along timelike geodesics crossing the Cauchy horizon. These results are in agreement with previous analyses of black hole interiors. We briefly discuss some outstanding problems which must be resolved before the picture of the generic black hole interior is complete.Comment: 16 pages, RevTeX, 3 figures included using psfi

    Quasi-normal modes of Schwarzschild-de Sitter black holes

    Full text link
    The low-laying frequencies of characteristic quasi-normal modes (QNM) of Schwarzschild-de Sitter (SdS) black holes have been calculated for fields of different spin using the 6th-order WKB approximation and the approximation by the P\"{o}shl-Teller potential. The well-known asymptotic formula for large ll is generalized here on a case of the Schwarzchild-de Sitter black hole. In the limit of the near extreme Λ\Lambda term the results given by both methods are in a very good agreement, and in this limit fields of different spin decay with the same rate.Comment: 9 pages, 1 ancillary Mathematica(R) noteboo

    Neutrino induced transitions between the ground states of the A=12 triad

    Get PDF
    Neutrino induced reactions on 12^{12}C, an ingredient of liquid scintillators, have been studied in several experiments. We show that for currently available neutrino energies, EνE_{\nu} \le 300 MeV, calculated exclusive cross sections 12^{12}Cgs(ν,l)_{gs}(\nu,l)12^{12}Ngs_{gs} for both muon and electron neutrinos are essentially model independent, provided the calculations simultaneously describe the rates of several other reactions involving the same states or their isobar analogs. The calculations agree well with the measured cross sections, which can be therefore used to check the normalization of the incident neutrino spectrum and the efficiency of the detector.Comment: 9 pages REVTEX, 2 postscript figures, text and figures available at http://www.krl.caltech.edu/preprints/MAP.htm

    Gravitational collapse in 2+1 dimensional AdS spacetime

    Get PDF
    We present results of numerical simulations of the formation of black holes from the gravitational collapse of a massless, minimally-coupled scalar field in 2+1 dimensional, axially-symmetric, anti de-Sitter (AdS) spacetime. The geometry exterior to the event horizon approaches the BTZ solution, showing no evidence of scalar `hair'. To study the interior structure we implement a variant of black-hole excision, which we call singularity excision. We find that interior to the event horizon a strong, spacelike curvature singularity develops. We study the critical behavior at the threshold of black hole formation, and find a continuously self-similar solution and corresponding mass-scaling exponent of approximately 1.2. The critical solution is universal to within a phase that is related to the angle deficit of the spacetime.Comment: 31 pages, 20 figures, LaTeX. Replaced with version to be published in Phys. Rev.

    Square root singularity in the viscosity of neutral colloidal suspensions at large frequencies

    Full text link
    The asymptotic frequency ω\omega, dependence of the dynamic viscosity of neutral hard sphere colloidal suspensions is shown to be of the form η0A(ϕ)(ωτP)1/2\eta_0 A(\phi) (\omega \tau_P)^{-1/2}, where A(ϕ)A(\phi) has been determined as a function of the volume fraction ϕ\phi, for all concentrations in the fluid range, η0\eta_0 is the solvent viscosity and τP\tau_P the P\'{e}clet time. For a soft potential it is shown that, to leading order steepness, the asymptotic behavior is the same as that for the hard sphere potential and a condition for the cross-over behavior to 1/ωτP1/\omega \tau_P is given. Our result for the hard sphere potential generalizes a result of Cichocki and Felderhof obtained at low concentrations and agrees well with the experiments of van der Werff et al, if the usual Stokes-Einstein diffusion coefficient D0D_0 in the Smoluchowski operator is consistently replaced by the short-time self diffusion coefficient Ds(ϕ)D_s(\phi) for non-dilute colloidal suspensions.Comment: 18 pages LaTeX, 1 postscript figur

    Non-linear instability of Kerr-type Cauchy horizons

    Get PDF
    Using the general solution to the Einstein equations on intersecting null surfaces developed by Hayward, we investigate the non-linear instability of the Cauchy horizon inside a realistic black hole. Making a minimal assumption about the free gravitational data allows us to solve the field equations along a null surface crossing the Cauchy Horizon. As in the spherical case, the results indicate that a diverging influx of gravitational energy, in concert with an outflux across the CH, is responsible for the singularity. The spacetime is asymptotically Petrov type N, the same algebraic type as a gravitational shock wave. Implications for the continuation of spacetime through the singularity are briefly discussed.Comment: 11 pages RevTeX, two postscript figures included using epsf.st

    Self-organized Emergence of Navigability on Small-World Networks

    Full text link
    This paper mainly investigates why small-world networks are navigable and how to navigate small-world networks. We find that the navigability can naturally emerge from self-organization in the absence of prior knowledge about underlying reference frames of networks. Through a process of information exchange and accumulation on networks, a hidden metric space for navigation on networks is constructed. Navigation based on distances between vertices in the hidden metric space can efficiently deliver messages on small-world networks, in which long range connections play an important role. Numerical simulations further suggest that high cluster coefficient and low diameter are both necessary for navigability. These interesting results provide profound insights into scalable routing on the Internet due to its distributed and localized requirements.Comment: 3 figure

    Algorithmic Complexity for Short Binary Strings Applied to Psychology: A Primer

    Full text link
    Since human randomness production has been studied and widely used to assess executive functions (especially inhibition), many measures have been suggested to assess the degree to which a sequence is random-like. However, each of them focuses on one feature of randomness, leading authors to have to use multiple measures. Here we describe and advocate for the use of the accepted universal measure for randomness based on algorithmic complexity, by means of a novel previously presented technique using the the definition of algorithmic probability. A re-analysis of the classical Radio Zenith data in the light of the proposed measure and methodology is provided as a study case of an application.Comment: To appear in Behavior Research Method
    corecore