43 research outputs found

    Universal design of an automatic page-turner

    Get PDF
    This thesis deals with the effectiveness of automatic page-turners as one form of assistive technology. It examines several of the existing commercially available products with a view to developing a universal system that would have the potential to satisfy both the special needs and musician sectors. It explores the current trends regarding the collection of statistical data on people with a physical disability, which is intended to identify the= present and future needs for such assistive technology devices. The project utilizes a usercentric approach to document the requirements of the end users of such a device, before conceptualising a model which would have the potential to satisfy the expanded target market. It explains in detail the development process of the working model, which employs two anthropomorphic finger-like mechanisms, both of which incorporate force feedback. These finger-mimetic components are used to separate and turn the pages of the reading material. A functional prototype was built and a report of the preliminary testing carried out, together with a fully documented illustration of the final working engineering model is included. The test results reveal that the system has shown great potential for the successful development of a more universal Automatic page turner that could satisfy both identified markets

    Identification of movement categories and associated velocity thresholds for elite Gaelic football and hurling referees

    Get PDF
    The purpose of this study was to generate movement category velocity thresholds for elite Gaelic football (GF) and hurling referees using a two-stage unsupervised clustering technique. Activity data from 41 GF and 38 hurling referees was collected using global positioning system technology during 338 and 221 competitive games, respectively. The elbow method was used in stage one to identify the number of movement categories in the datasets. In stage two, the respective velocity thresholds for each category were identified using spectral clustering. The efficacy of these thresholds was examined using a regression analysis performed between the median of each of the velocity thresholds and the raw velocity data. Five velocity thresholds were identified for both GF and hurling referees (mean ± standard deviation: GF referees; 0.70±0.09, 1.66±0.19, 3.28±0.41, 4.87±0.61, 6.49±0.50 m·s−1; hurling referees; 0.69±0.11, 1.60±0.25, 3.09±0.52, 4.63±0.58, 6.35±0.43 m·s−1). With the exception of the lowest velocity threshold, all other thresholds were significantly higher for GF referees. The newly generated velocity thresholds were more strongly associated with the raw velocity data than traditional generic categories. The provision of unique velocity thresholds will allow applied practitioners to better quantify the activity profile of elite GF and hurling referees during training and competition

    A wearable sensor for the detection of sodium and potassium in human sweat during exercise

    Get PDF
    © 2020 The Author(s) The SwEatch platform, a wearable sensor for sampling and measuring the concentration of electrolytes in human sweat in real time, has been improved in order to allow the sensing of two analytes. The solid contact ion-sensitive electrodes (ISEs) for the detection of Na+ and K+ have been developed in two alternative formulations, containing either poly(3,4-ethylenedioxythiophene) (PEDOT) or poly(3-octylthiophene-2,5-diyl) (POT) as a conductive polymer transducing component. The solution-processable POT formulation simplifies the fabrication process, and sensor to sensor reproducibility has been improved via partial automation using an OpentronÂź automated pipetting robot. The resulting electrodes showed good sensitivity (52.4 ± 6.3 mV/decade (PEDOT) and 56.4 ± 2.2 mV/decade (POT) for Na+ ISEs, and 45.7 ± 7.4 mV/decade (PEDOT) and 54.3 ± 1.5 mV/decade (POT) for K+) and excellent selectivity towards potential interferents present in human sweat (H+, Na+, K+, Mg2+, Ca2+). The 3D printed SwEatch platform has been redesigned to incorporate a double, mirrored fluidic unit which is capable of drawing sweat from the skin through passive capillary action and bring it in contact with two independent electrodes. The potentiometric signal generated by the electrodes is measured by an integrated electronics board, digitised and transmitted via Bluetooth to a laptop. The results obtained from on-body trials on athletes during cycling show a relatively small increase in sodium (1.89 mM–2.97 mM) and potassium (3.31 mM–7.25 mM) concentrations during the exercise period of up to 90 min

    Factors Affecting Pre-Travel Health Seeking Behaviour and Adherence to Pre-Travel Health Advice: A Systematic Review.

    Get PDF
    BACKGROUND: Recent years have seen unprecedented growth in international travel. Travellers are at high risk for acquiring infections while abroad and potentially bringing these infections back to their home country. There are many ways to mitigate this risk by seeking pre-travel advice (PTA), including receiving recommended vaccinations and chemoprophylaxis, however many travellers do not seek or adhere to PTA. We conducted a systematic review to further understand PTA-seeking behaviour with an ultimate aim to implement interventions that improve adherence to PTA and reduce morbidity and mortality in travellers. METHODS: We conducted a systematic review of published medical literature selecting studies that examined reasons for not seeking PTA and non-adherence to PTA over the last ten years. 4484 articles were screened of which 56 studies met our search criteria after full text review. RESULTS: The major reason for not seeking or non-adherence to PTA was perceived low risk of infection while travelling. Side effects played a significant role for lack of adherence specific to malaria prophylaxis. CONCLUSIONS: These data may help clinicians and public health providers to better understand reasons for non-adherence to PTA and target interventions to improve travellers understanding of potential and modifiable risks. Additionally, we discuss specific recommendations to increase public health education that may enable travellers to seek PTA

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore