247 research outputs found
Will buffer zones around schools in agricultural areas be adequate to protect children from the potential adverse effects of pesticide exposure?
California has proposed limiting agricultural pesticide use within 0.4 km of schools and childcare facilities. However, the 0.4-km buffer may not be appropriate for all pesticides because of differing toxicities, fate, and application methods. Living near pesticide use has been associated with poorer birth outcomes, neurodevelopment, and respiratory function in children. More research about exposures in schools, childcare facilities, and homes is needed. Despite incomplete science, this regulation is an important step to reduce potential exposures to children. The most vulnerable exposure period may be in utero, and future regulations should also aim to reduce exposures to pregnant women
Recommended from our members
Pregnancy lipidomic profiles and DNA methylation in newborns from the CHAMACOS cohort.
Lipids play a role in many biological functions and the newly emerging field of lipidomics aims to characterize the varying classes of lipid molecules present in biological specimens. Animal models have shown associations between maternal dietary supplementation with fatty acids during pregnancy and epigenetic changes in their offspring, demonstrating a mechanism through which prenatal environment can affect outcomes in children; however, data on maternal lipid metabolite levels during pregnancy and newborn DNA methylation in humans are sparse. In this study, we assessed the relationship of maternal lipid metabolites measured in the blood from pregnant women with newborn DNA methylation profiles in the Center for the Health Assessment of Mothers and Children of Salinas cohort. Targeted metabolomics was performed by selected reaction monitoring liquid chromatography and triple quadrupole mass spectrometry to measure 92 metabolites in plasma samples of pregnant women at ∼26 weeks gestation. DNA methylation was assessed using the Infinium HumanMethylation 450K BeadChip adjusting for cord blood cell composition. We uncovered numerous false discovery rate significant associations between maternal metabolite levels, particularly phospholipid and lysolipid metabolites, and newborn methylation. The majority of the observed relationships were negative, suggesting that higher lipid metabolites during pregnancy are associated with lower methylation levels at genes related to fetal development. These results further elucidate the complex relationship between early life exposures, maternal lipid metabolites, and infant epigenetic status
Urinary Phthalate Metabolites and Biomarkers of Oxidative Stress in a Mexican-American Cohort: Variability in Early and Late Pregnancy.
People are exposed to phthalates through their wide use as plasticizers and in personal care products. Many phthalates are endocrine disruptors and have been associated with adverse health outcomes. However, knowledge gaps exist in understanding the molecular mechanisms associated with the effects of exposure in early and late pregnancy. In this study, we examined the relationship of eleven urinary phthalate metabolites with isoprostane, an established marker of oxidative stress, among pregnant Mexican-American women from an agricultural cohort. Isoprostane levels were on average 20% higher at 26 weeks than at 13 weeks of pregnancy. Urinary phthalate metabolite concentrations suggested relatively consistent phthalate exposures over pregnancy. The relationship between phthalate metabolite concentrations and isoprostane levels was significant for the sum of di-2-ethylhexyl phthalate and the sum of high molecular weight metabolites with the exception of monobenzyl phthalate, which was not associated with oxidative stress at either time point. In contrast, low molecular weight metabolite concentrations were not associated with isoprostane at 13 weeks, but this relationship became stronger later in pregnancy (p-value = 0.009 for the sum of low molecular weight metabolites). Our findings suggest that prenatal exposure to phthalates may influence oxidative stress, which is consistent with their relationship with obesity and other adverse health outcomes
In utero DDT and DDE exposure and obesity status of 7-year-old Mexican-American children in the CHAMACOS cohort.
BackgroundIn utero exposure to endocrine disrupting compounds including dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) has been hypothesized to increase risk of obesity later in life.ObjectivesThe Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study is a longitudinal birth cohort of low-income Latinas living in a California agricultural community. We examined the relation of in utero DDT and DDE exposure to child obesity at 7 years of age. We also examined the trend with age (2, 3.5, 5, and 7 years) in the exposure-obesity relation.MethodsWe included 270 children with o,p´-DDT, p,p´-DDT, and p,p´-DDE concentrations measured in maternal serum during pregnancy (nanograms per gram lipid) and complete 7-year follow-up data including weight (kilograms) and height (centimeters). Body mass index (BMI; kilograms per meter squared) was calculated and obesity was defined as ≥ 95th percentile on the sex-specific BMI-for-age Centers for Disease Control and Prevention 2000 growth charts.ResultsAt 7 years, 96 (35.6%) children were obese. A 10-fold increase in o,p´-DDT, p,p´-DDT, or p,p´-DDE, was nonsignificantly associated with increased odds (OR) of obesity [o,p´-DDT adjusted (adj-) OR = 1.17, 95% CI: 0.75, 1.82; p,p´-DDT adj-OR = 1.19, 95% CI: 0.81, 1.74; p,p´-DDE adj-OR = 1.22, 95% CI: 0.72, 2.06]. With increasing age at follow-up, we observed a significant trend toward a positive association between DDT and DDE exposure and odds of obesity.ConclusionWe did not find a significant positive relation between in utero DDT and DDE exposure and obesity status of 7-year-old children. However, given the observed trend with age, continued follow-up will be informative
Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study.
BackgroundBisphenol A (BPA) is widely used in the manufacture of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt thyroid function. Although thyroid hormones play a determinant role in human growth and brain development, no studies have investigated relations between BPA exposure and thyroid function in pregnant women or neonates.ObjectiveOur goal was to evaluate whether exposure to BPA during pregnancy is related to thyroid hormone levels in pregnant women and neonates.MethodsWe measured BPA concentration in urine samples collected during the first and second half of pregnancy in 476 women participating in the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We also measured free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in women during pregnancy, and TSH in neonates.ResultsAssociations between the average of the two BPA measurements and maternal thyroid hormone levels were not statistically significant. Of the two BPA measurements, only the one taken closest in time to the TH measurement was significantly associated with a reduction in total T4 (β = -0.13 µg/dL per log2 unit; 95% CI: -0.25, 0.00). The average of the maternal BPA concentrations was associated with reduced TSH in boys (-9.9% per log2 unit; 95% CI: -15.9%, -3.5%) but not in girls. Among boys, the relation was stronger when BPA was measured in the third trimester of pregnancy and decreased with time between BPA and TH measurements.ConclusionResults suggest that exposure to BPA during pregnancy is related to reduced total T4 in pregnant women and decreased TSH in male neonates. Findings may have implications for fetal and neonatal development
Correlating Agricultural Use of Organophosphates with Outdoor Air Concentrations: A Particular Concern for Children
For the organophosphate pesticide chlorpyrifos, median inhalation noncancer, acute children’s exposures in agricultural communities are elevated above reference doses; for diazinon, similar exposures are nearly elevated. We used multivariate linear regression analysis to examine the temporal and spatial associations between agricultural use and measured air concentrations of chlorpyrifos, chlorpyrifos oxon, diazinon, and malathion. Agricultural use within a 3-mile radius on the monitoring day and use on the 2–4 prior days were significantly associated with air concentrations (p < 0.01) for all analytes except malathion; chlorpyrifos oxon showed the strongest association (p < 0.0001). In the final models, which included weather parameters, the proportion of variance (r (2), adjusted for the number of model variables) for all analytes ranged from 0.28 (p < 0.01) for malathion to 0.65 (p < 0.0001) for diazinon. Recent cellular, animal, and human evidence of toxicity, particularly in newborns, supports the public health concern indicated by initial risk estimates. Agricultural applications of organophosphates and their oxon products may have substantial volatization and off-field movement and are a probable source of exposures of public health concern
Recommended from our members
Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities.
BackgroundRecent organic diet intervention studies suggest that diet is a significant source of pesticide exposure in young children. These studies have focused on children living in suburban communities.ObjectivesWe aimed to determine whether consuming an organic diet reduced urinary pesticide metabolite concentrations in 40 Mexican-American children, 3-6 years of age, living in California urban and agricultural communities.MethodsIn 2006, we collected urine samples over 16 consecutive days from children who consumed conventionally grown food for 4 days, organic food for 7 days, and then conventionally grown food for 5 days. We measured 23 metabolites, reflecting potential exposure to organophosphorous (OP), pyrethroid, and other pesticides used in homes and agriculture. We used linear mixed-effects models to evaluate the effects of diet on urinary metabolite concentrations.ResultsFor six metabolites with detection frequencies > 50%, adjusted geometric mean concentrations during the organic phase were generally lower for all children, and were significant for total dialkylphosphates (DAPs) and dimethyl DAPs (DMs; metabolites of OP insecticides) and 2,4-D (2,4-dichlorophenoxyacetic acid, a herbicide), with reductions of 40%, 49%, and 25%, respectively (p < 0.01). Chemical-specific metabolite concentrations for several OP pesticides, pyrethroids, and herbicides were either infrequently detected and/or not significantly affected by diet. Concentrations for most of the frequently detected metabolites were generally higher in Salinas compared with Oakland children, with DMs and metolachlor at or near significance (p = 0.06 and 0.03, respectively).ConclusionAn organic diet was significantly associated with reduced urinary concentrations of nonspecific dimethyl OP insecticide metabolites and the herbicide 2,4-D in children. Additional research is needed to clarify the relative importance of dietary and non-dietary sources of pesticide exposures to young children
In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study.
BackgroundCalifornia children's exposures to polybrominated diphenyl ether flame retardants (PBDEs) are among the highest worldwide. PBDEs are known endocrine disruptors and neurotoxicants in animals.ObjectiveHere we investigate the relation of in utero and child PBDE exposure to neurobehavioral development among participants in CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas), a California birth cohort.MethodsWe measured PBDEs in maternal prenatal and child serum samples and examined the association of PBDE concentrations with children's attention, motor functioning, and cognition at 5 (n = 310) and 7 years of age (n = 323).ResultsMaternal prenatal PBDE concentrations were associated with impaired attention as measured by a continuous performance task at 5 years and maternal report at 5 and 7 years of age, with poorer fine motor coordination-particularly in the nondominant-at both age points, and with decrements in Verbal and Full-Scale IQ at 7 years. PBDE concentrations in children 7 years of age were significantly or marginally associated with concurrent teacher reports of attention problems and decrements in Processing Speed, Perceptual Reasoning, Verbal Comprehension, and Full-Scale IQ. These associations were not altered by adjustment for birth weight, gestational age, or maternal thyroid hormone levels.ConclusionsBoth prenatal and childhood PBDE exposures were associated with poorer attention, fine motor coordination, and cognition in the CHAMACOS cohort of school-age children. This study, the largest to date, contributes to growing evidence suggesting that PBDEs have adverse impacts on child neurobehavioral development
- …