8,961 research outputs found

    An experimental investigation of leading-edge vortex augmentation by blowing

    Get PDF
    A wind tunnel test was conducted to determine the effects of over-the-wing blowing as a means of augmenting the leading-edge vortex flow of several pointed-tip, sharp-edged planforms. Arrow, delta, and diamond wings with leading-edge sweeps of 30 and 45 degrees were mounted on a body-of-revolution fuselage and tested in a low-speed wind tunnel at a Mach number of 0.2. Nozzle location data, pitch data, and flow-visualization pictures were obtained for a range of blowing rates. Results show pronounced increases in vortex lift due to the blowing

    Bright tripartite entanglement in triply concurrent parametric oscillation

    Get PDF
    We show that a novel optical parametric oscillator, based on concurrent χ(2)\chi^{(2)} nonlinearities, can produce, above threshold, bright output beams of macroscopic intensities which exhibit strong tripartite continuous-variable entanglement. We also show that there are {\em two} ways that the system can exhibit a new three-mode form of the Einstein-Podolsky-Rosen paradox, and calculate the extra-cavity fluctuation spectra that may be measured to verify our predictions.Comment: title change, expanded intro and discussion of experimental aspects, 1 new figure. Conclusions unaltere

    First-principle Wannier functions and effective lattice fermion models for narrow-band compounds

    Full text link
    We propose a systematic procedure for constructing effective lattice fermion models for narrow-band compounds on the basis of first-principles electronic structure calculations. The method is illustrated for the series of transition-metal (TM) oxides: SrVO3_3, YTiO3_3, V2_2O3_3, and Y2_2Mo2_2O7_7. It consists of three parts, starting from LDA. (i) construction of the kinetic energy Hamiltonian using downfolding method. (ii) solution of an inverse problem and construction of the Wannier functions (WFs) for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb interactions in the basis of \textit{auxiliary} WFs, for which the kinetic-energy term is set to be zero. The last step is necessary in order to avoid the double counting of the kinetic-energy term, which is included explicitly into the model. The screened Coulomb interactions are calculated in a hybrid scheme. First, we evaluate the screening caused by the change of occupation numbers and the relaxation of the LMTO basis functions, using the conventional constraint-LDA approach, where all matrix elements of hybridization involving the TM dd orbitals are set to be zero. Then, we switch on the hybridization and evaluate the screening associated with the change of this hybridization in RPA. The second channel of screening is very important, and results in a relatively small value of the effective Coulomb interaction for isolated t2gt_{2g} bands. We discuss details of this screening and consider its band-filling dependence, frequency dependence, influence of the lattice distortion, proximity of other bands, and the dimensionality of the model Hamiltonian.Comment: 35 pages, 25 figure

    Quadripartite continuous-variable entanglement via quadruply concurrent downconversion

    Get PDF
    We investigate an intra-cavity coupled down-conversion scheme to generate quadripartite entanglement using concurrently resonant nonlinearities. We verify that quadripartite entanglement is present in this system by calculating the output fluctuation spectra and then considering violations of optimized inequalities of the van Loock-Furusawa type. The entanglement characteristics both above and below the oscillation threshold are considered. We also present analytic solutions for the quadrature operators and the van Loock-Furusawa correlations in the undepleted pump approximation.Comment: 9 pages, 5 figure

    A pp-adic RanSaC algorithm for stereo vision using Hensel lifting

    Full text link
    A pp-adic variation of the Ran(dom) Sa(mple) C(onsensus) method for solving the relative pose problem in stereo vision is developped. From two 2-adically encoded images a random sample of five pairs of corresponding points is taken, and the equations for the essential matrix are solved by lifting solutions modulo 2 to the 2-adic integers. A recently devised pp-adic hierarchical classification algorithm imitating the known LBG quantisation method classifies the solutions for all the samples after having determined the number of clusters using the known intra-inter validity of clusterings. In the successful case, a cluster ranking will determine the cluster containing a 2-adic approximation to the "true" solution of the problem.Comment: 15 pages; typos removed, abstract changed, computation error remove

    Design Optimization for Solar Array of Multiple Collector Types

    Get PDF
    Methodology is presented for optimizing solar arrays used for heating fluids from ambient to elevated temperatures. The optimal array consists of the appropriate combination of available collector types which delivers the most energy per dollar invested in the array. An example optimization is presented and verified using computer simulation of numerous combinations of collector types

    Dissipative dynamics of vortex arrays in trapped Bose-condensed gases: neutron stars physics on μ\muK scale

    Full text link
    We develop a theory of dissipative dynamics of large vortex arrays in trapped Bose-condensed gases. We show that in a static trap the interaction of the vortex array with thermal excitations leads to a non-exponential decay of the vortex structure, and the characteristic lifetime depends on the initial density of vortices. Drawing an analogy with physics of pulsar glitches, we propose an experiment which employs the heating of the thermal cloud in the course of the decay of the vortex array as a tool for a non-destructive study of the vortex dynamics.Comment: 4 pages, revtex; revised versio

    Determination of the s-wave Scattering Length of Chromium

    Full text link
    We have measured the deca-triplet s-wave scattering length of the bosonic chromium isotopes 52^{52}Cr and 50^{50}Cr. From the time constants for cross-dimensional thermalization in atomic samples we have determined the magnitudes ∣a(52Cr)∣=(170±39)a0|a(^{52}Cr)|=(170 \pm 39)a_0 and ∣a(50Cr)∣=(40±15)a0|a(^{50}Cr)|=(40 \pm 15)a_0, where a0=0.053nma_0=0.053nm. By measuring the rethermalization rate of 52^{52}Cr over a wide temperature range and comparing the temperature dependence with the effective-range theory and single-channel calculations, we have obtained strong evidence that the sign of a(52Cr)a(^{52}Cr) is positive. Rescaling our 52^{52}Cr model potential to 50^{50}Cr strongly suggests that a(50Cr)a(^{50}Cr) is positive, too.Comment: v3: corrected typo in y-axis scaling of Figs. 3 and

    Zero-temperature phase diagram of binary boson-fermion mixtures

    Full text link
    We calculate the phase diagram for dilute mixtures of bosons and fermions at zero temperature. The linear stability conditions are derived and related to the effective boson-induced interaction between the fermions. We show that in equilibrium there are three possibilities: a) a single uniform phase, b) a purely fermionic phase coexisting with a purely bosonic one and c) a purely fermionic phase coexisting with a mixed phase.Comment: 8 pages, revtex, 3 postscript figures; NORDITA-1999/71 C
    • …
    corecore