1,142 research outputs found

    Dynamic and Energetic Stabilization of Persistent Currents in Bose-Einstein Condensates

    Get PDF
    We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical and numerical exploration of dynamically and energetically stable pinning of vortices with winding number up to S=6S=6, in correspondence with experimental observations. Stable pinning is quantified theoretically via Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a range of conditions similar to those of experimental observations. The theoretical and numerical results indicate that the pinned winding number, or equivalently the winding number of the superfluid current about the laser beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps explain previous experimental observations, and helps define limits of stable vortex pinning for future experiments involving vortex manipulation by laser beams.Comment: 8 pages 5 figure

    Using trait-based filtering as a predictive framework for conservation: A case study of bats on farms in southeastern Australia

    Get PDF
    1.With world-wide changes in human land use, an important challenge for conservation biologists is to develop frameworks to predict how species will respond to landscape change. Environmental filtering, where different environments favour different species' traits, has the potential to be a useful predictive framework. Therefore, it is important to advance our understanding of how species with different traits respond to environmental variables. 2.We investigated the distribution of microbats in a 1000000ha agricultural region in southeastern Australia, with specific emphasis on the effects of tree density on bat species characterized by different sizes, wing shapes and echolocation frequencies. The study area is substantially cleared, and trees are continuing to decline because grazing inhibits tree regeneration. We monitored bat activity acoustically at 80 sites spanning a wide range of tree densities. We used regression modelling to quantify the response of bats to tree density and other ecological covariates, and RLQ analysis to assess how different traits correlated with various environmental gradients. 3.Total bat activity and species richness peaked at intermediate tree densities. Species composition was explained by tree density and the traits of individual species. Sites with low tree cover were dominated by large, fast-flying species, whereas sites with dense tree cover were dominated by smaller, highly manoeuvrable species. These findings are consistent with recent findings from other locations around the world. 4.Synthesis and applications. Trait-based predictive frameworks enable landscape managers to assess how different management strategies and landscape modifications are likely to affect different species. Here, we propose a framework to derive general predictions of how bats respond to landscape modification, based on tree density and species traits. We apply this framework to a current conservation issue of tree decline in our study area and derive management priorities including: (i) maintaining a range of tree densities throughout the region; (ii) ensuring the persistence of locations with intermediate tree densities; and (iii) using environmentally sensitive grazing practices, for example, by incorporating long rest periods. Trait-based predictive frameworks enable landscape managers to assess how different management strategies and landscape modifications are likely to affect different species. Here, we propose a framework to derive general predictions of how bats respond to landscape modification, based on tree density and species traits. We apply this framework to a current conservation issue of tree decline in our study area and derive management priorities including: (i) maintaining a range of tree densities throughout the region; (ii) ensuring the persistence of locations with intermediate tree densities; and (iii) using environmentally sensitive grazing practices, for example, by incorporating long rest periods

    Designing Effective Habitat Studies: Quantifying Multiple Sources of Variability in Bat Activity

    No full text
    Common aims of habitat studies are to differentiate between (i) suitable and unsuitable sites for a given species, and (ii) sites used by different communities of species. To quantify differences between sites, field data of site use must be precise enough that true underlying between-site variability is not masked by within-site measurement error. We designed a pilot study to guide the development of a survey protocol for a habitat study on bats in an agricultural landscape in southeastern Australia. Three woodland sites and two scattered tree sites of 2 ha each were surveyed for nine consecutive nights. At three locations within each site (spaced > 50 m apart) one or two Anabat detectors were mounted 1 m above ground or in a tree (2 m above ground). We used mixed regression models to quantify multiple sources of variability in bat calling activity, and graphical data analysis to visualise how increases in survey effort were likely to affect inference. For the five most active species, we found that typically over 40% of variability in nightly detections occurred at the between-site level; approximately 10% occurred between locations within sites; approximately 20% was explained by night-to-night differences; and approximately 30% of variability was not attributable to systematic variation within experimental units. Differences in community composition between sites were clearly evident when two or more detectors per site were used for four or more nights. We conclude with six general considerations for the design of effective habitat studies. These are to (i) consider key contrasts of interest; (ii) use data from mild, calm, dry nights only; (iii) calibrate detectors; (iv) use multiple detectors where possible, or move a single detector within a site; (v) survey for multiple nights; and (vi) where vertical differentiation in habitat use is likely, mount detectors at different heights. These considerations need to be balanced within the context of financial and logistical constraints

    Influence of spark ignition in the determination of Markstein lengths using spherically expanding flames

    Get PDF
    Constant pressure outwardly propagating flame experiments in a spherical bomb are performed to examine the duration and radius over which spark ignition effects persist. This is motivated by the need to properly account for such effects in the measurement of laminar burning velocity and Markstein length using the spark ignited expanding flame technique. Ignition energy was varied and its effects on flame propagation in methane-air and isooctane-air mixtures were studied. The Markstein length of the mixture proved critical in the ignition energy dependency of flame propagation. For relatively high values, an underlying common variation of self-sustaining flame speed with radius can be identified by the rapid convergence of curves for different ignition energies. As the Markstein length decreases, low energy spark ignition is found to give rise to a distorted and wrinkled flame kernel. For such mixtures, due to the weak effect of stretch, the kernel subsequently develops into a non-spherically propagating flame. In these cases the spark ignition effect persists up to large radius. It is shown that using low ignition energy leads to a flame speed, during the development phase, which is higher than that of a self-sustaining spherical flame. It is further shown that if this effect is not accounted for, measurements of Markstein length using standard fitting techniques results in a large error. This problem is found to worsen as the Markstein length decreases, such that its apparent measured value becomes increasingly influenced by any distortions of the flame kernel produced by the spark

    Double Phase Transitions in Magnetized Spinor Bose-Einstein Condensation

    Full text link
    It is investigated theoretically that magnetized Bose-Einstein condensation (BEC) with the internal (spin) degrees of freedom exhibits a rich variety of phase transitions, depending on the sign of the interaction in the spin channel. In the antiferromagnetic interaction case there exist always double BEC transitions from single component BEC to multiple component BEC. In the ferromagnetic case BEC becomes always unstable at a lower temperature, leading to a phase separation. The detailed phase diagram for the temperature vs the polarization, the spatial spin structure, the distribution of non-condensates and the excitation spectrum are examined for the harmonically trapped systems.Comment: 6 pages, 7 figures. Submitted to J. Phys. Soc. Jp

    Mean field ground state of a spin-1 condensate in a magnetic field

    Full text link
    We revisit the topic of the mean field ground state of a spin-1 atomic condensate inside a uniform magnetic field (BB) under the constraints that both the total number of atoms (NN) and the magnetization (M\cal M) are conserved. In the presence of an internal state (spin component) independent trap, we also investigate the dependence of the so-called single spatial mode approximation (SMA) on the magnitude of the magnetic field and M{\cal M}. Our result indicate that the quadratic Zeeman effect is an important factor in balancing the mean field energy from elastic atom-atom collisions that are known to conserve both NN and M\cal M.Comment: 13 pages, 9 figures, to be published in New J. Phys. (http://www.njp.org/

    Impact of temperature and hydraulic retention time on pathogen and nutrient removal in woodchip bioreactors

    Get PDF
    Woodchip denitrification bioreactors are an important edge-of-field practice for treating agricultural drainage; however, their ability to filter microbial pollutants has primarily been explored in the context of wastewater treatment. Upflow column reactors were constructed and tested for E. coli, Salmonella, NO3-N, and dissolved reactive phosphorus (DRP) at hydraulic retention times (HRTs) of 12 and 24 h and at controlled temperatures of 10 and 21.5 °C. Influent solution was spiked to 30 mg L−1 NO3-N, 2–8 × 105 E. coli and Salmonella, and 0.1 mg L−1 DRP. Microbial removal was consistently observed with removal ranging from 75 to 78% reduction at 10 °C and 90–96% at 21.5 °C. The concentration reduction ranged from 2.75 to 9.03 × 104 for both organisms. HRT had less impact on microbial removal than temperature and thus further investigation of removal under lower HRTs is warranted. Nitrate concentrations averaged 96% reduction (with load removal of 14.6 g N m−3 d−1) from 21.5 °C columns at 24 HRT and 29% reduction (with load removal of 8.8 g N m−3 d−1) from 10 °C columns at 12 HRT. DRP removal was likely temporary due to microbial uptake. While potential for removal of E. coli and Salmonella by woodchip bioreactors is demonstrated, system design will need to be considered. High concentrations of these microbial contaminants are likely to occur during peak flows, when bypass flow may be occurring. The results of this study show that woodchip bioreactors operated for nitrate removal have a secondary benefit through the removal of enteric bacteria

    The dynamics of quantum phases in a spinor condensate

    Full text link
    We discuss the quantum phases and their diffusion dynamics in a spinor-1 atomic Bose-Einstein condensate. For ferromagnetic interactions, we obtain the exact ground state distribution of the phases associated with the total atom number (NN), the total magnetization (M{\cal M}), and the alignment (or hypercharge) (YY) of the system. The mean field ground state is stable against fluctuations of atom numbers in each of the spin components, and the phases associated with the order parameter for each spin components diffuse while dynamically recover the two broken continuous symmetries [U(1) and SO(2)] when NN and M{\cal M} are conserved as in current experiments. We discuss the implications to the quantum dynamics due to an external (homogeneous) magnetic field. We also comment on the case of a spinor-1 condensate with anti-ferromagnetic interactions.Comment: 5 figures, an extended version of cond-mat/030117

    Characteristics of Two-Dimensional Quantum Turbulence in a Compressible Superfluid

    Get PDF
    Under suitable forcing a fluid exhibits turbulence, with characteristics strongly affected by the fluid's confining geometry. Here we study two-dimensional quantum turbulence in a highly oblate Bose-Einstein condensate in an annular trap. As a compressible quantum fluid, this system affords a rich phenomenology, allowing coupling between vortex and acoustic energy. Small-scale stirring generates an experimentally observed disordered vortex distribution that evolves into large-scale flow in the form of a persistent current. Numerical simulation of the experiment reveals additional characteristics of two-dimensional quantum turbulence: spontaneous clustering of same-circulation vortices, and an incompressible energy spectrum with k−5/3k^{-5/3} dependence for low wavenumbers kk and k−3k^{-3} dependence for high kk.Comment: 7 pages, 7 figures. Reference [29] updated for v
    • …
    corecore