7 research outputs found

    Identification and analysis of truncated and elongated species of the flavivirus NS1 protein

    No full text
    The flavivirus non-structural glycoprotein NS1 is often detected in Western blots as a heterogeneous cluster of bands due to glycosylation variations, precursor-product relationships and/or alternative cleavage sites in the viral polyprotein, In this study, we determined the basis of structural heterogeneity of the NS1 protein of Murray Valley encephalitis virus (MVE) by glycosylation analysis, pulse-chase experiments and terminal amino acid sequencing. Inhibition of N-linked glycosylation by tunicamycin revealed that NS1 synthesised in MVE-infected C6/36 cells was derived from two polypeptide backbones of 39 kDa (NS1 degrees) and 47 kDa (NS1'). Pulse-chase experiments established that no precursor-product relationship existed between NS1 degrees and NS1' and that both were stable end products. Terminal sequencing revealed that the N- and C-termini of NS1 degrees were located at amino acid positions 714 and 1145 in the polyprotein respectively, consistent with the predicted sites based upon sequence homology with other flaviviruses. Expression of the NS1 gene alone or in conjunction with NS2A by recombinant baculoviruses demonstrated that the production of NS1' was dependent on the presence of NS2A, indicating that the C-terminus of the larger protein was generated within NS2A. A smaller form (31 kDa) of NS1 (Delta NS1) was also identified in MVE-infected Vero cultures, and amino acid sequencing revealed a 129-residue truncation at the N-terminus of this protein. This corresponds closely with the in-frame 121-codon deletion at the 5' end of the NS1 gene of defective MVE viral RNA (described by Lancaster et al. in 1998), suggesting that Delta NS1 may be a translation product of defective viral RNA. (C) 1999 Elsevier Science B.V. All rights reserved

    Epitope-Blocking Enzyme-Linked Immunosorbent Assays for the Detection of Serum Antibodies to West Nile Virus in Multiple Avian Species

    Get PDF
    We report the development of epitope-blocking enzyme-linked immunosorbent assays (ELISAs) for the rapid detection of serum antibodies to West Nile virus (WNV) in taxonomically diverse North American avian species. A panel of flavivirus-specific monoclonal antibodies (MAbs) was tested in blocking assays with serum samples from WNV-infected chickens and crows. Selected MAbs were further tested against serum samples from birds that represented 16 species and 10 families. Serum samples were collected from birds infected with WNV or Saint Louis encephalitis virus (SLEV) and from noninfected control birds. Serum samples from SLEV-infected birds were included in these experiments because WNV and SLEV are closely related antigenically, are maintained in similar transmission cycles, and have overlapping geographic distributions. The ELISA that utilized MAb 3.1112G potentially discriminated between WNV and SLEV infections, as all serum samples from WNV-infected birds and none from SLEV-infected birds were positive in this assay. Assays with MAbs 2B2 and 6B6C-1 readily detected serum antibodies in all birds infected with WNV and SLEV, respectively, and in most birds infected with the other virus. Two other MAbs partially discriminated between infections with these two viruses. Serum samples from most WNV-infected birds but no SLEV-infected birds were positive with MAb 3.67G, while almost all serum samples from SLEV-infected birds but few from WNV-infected birds were positive with MAb 6B5A-5. The blocking assays reported here provide a rapid, reliable, and inexpensive diagnostic and surveillance technique to monitor WNV activity in multiple avian species

    NS1′ of Flaviviruses in the Japanese Encephalitis Virus Serogroup Is a Product of Ribosomal Frameshifting and Plays a Role in Viral Neuroinvasiveness▿

    No full text
    Flavivirus NS1 is a nonstructural protein involved in virus replication and regulation of the innate immune response. Interestingly, a larger NS1-related protein, NS1′, is often detected during infection with the members of the Japanese encephalitis virus serogroup of flaviviruses. However, how NS1′ is made and what role it performs in the viral life cycle have not been determined. Here we provide experimental evidence that NS1′ is the product of a −1 ribosomal frameshift event that occurs at a conserved slippery heptanucleotide motif located near the beginning of the NS2A gene and is stimulated by a downstream RNA pseudoknot structure. Using site-directed mutagenesis of these sequence elements in an infectious clone of the Kunjin subtype of West Nile virus, we demonstrate that NS1′ plays a role in viral neuroinvasiveness

    Determination of the intramolecular disulfide bond arrangement and biochemical identification of the glycosylation sites of the nonstructural protein NS1 of Murray Valley encephalitis virus

    No full text
    The 12 cysteine residues in the flavivirus NS1 protein are strictly conserved, suggesting that they form disulfide bonds that are critical for folding the protein into a functional structure. In this study, we examined the intramolecular disulfide bond arrangement of NS1 of Murray Valley encephalitis virus and elucidated three of the six cysteine-pairing arrangements. Disulfide linkages were identified by separating tryptic-digested NS1 by reverse-phase high pressure liquid chromatography and analysing the resulting peptide peaks by protein sequencing, amino acid analysis and/or electrospray mass spectrometry. The pairing arrangements between the six amino-terminal cysteines were identified as follows: Cys(4)-Cys(15), Cys(55)-Cys(143) and Cys(179)-Cys(223). Although the pairing arrangements between the six carboxyterminal cysteines were not determined, we were able to eliminate several cysteine-pairing combinations. Furthermore, we demonstrated that all three putative N-linked glycosylation sites of NS1 are utilized and that the Asn(207) glycosylation site contains a mannose-rich glycan

    Prevalence of gastrointestinal parasites in domestic dogs in Tabasco, southeastern Mexico

    No full text
    Abstract The overall goal of this study was to estimate the prevalence of gastrointestinal (GI) parasites in dogs in the city of Villahermosa in Tabasco, Mexico. The study population consisted of 302 owned dogs that had limited access to public areas. A fecal sample was collected from each animal and examined for GI parasites by conventional macroscopic analysis and centrifugal flotation. Fecal samples from 80 (26.5%) dogs contained GI parasites. Of these, 58 (19.2%) were positive for helminths and 22 (7.3%) were positive for protozoan parasites. At least seven parasitic species were identified. The most common parasite was Ancylostoma caninum which was detected in 48 (15.9%) dogs. Other parasites detected on multiple occasions were Cystoisospora spp. (n = 19), Toxocara canis (n = 7) and Giardia spp. (n = 3). Three additional parasites, Dipylidium caninum, Trichuris vulpis and Uncinaria spp., were each detected in a single dog. No mixed parasitic infections were identified. In summary, we report a moderately high prevalence of GI parasites in owned dogs in Villahermosa, Tabasco. Several parasitic species identified in this study are recognized zoonotic pathogens which illustrates the important need to routinely monitor and treat dogs that live in close proximity to humans for parasitic infections
    corecore