343 research outputs found
N, P and K budgets for crop rotations on nine organic farms in the UK
On organic farms, where the importation of materials to build/maintain soil fertility is restricted, it is important that a balance between inputs and outputs of nutrients is achieved to ensure both short-term productivity and long-term sustainability. This paper considers different approaches to nutrient budgeting on organic farms and evaluates the sources of bias in the measurements and/or estimates of the nutrient inputs and outputs. The paper collates 88 nutrient budgets compiled at the farm scale in 9 temperate countries. All the nitrogen (N) budgets showed an N surplus (average 83.2 kg N ha-1 year-1). The efficiency of N use, defined as outputs/inputs, was highest (0.9) and lowest (0.2) in arable and beef systems respectively. The phosphorus (P) and potassium (K) budgets showed both surpluses and deficits (average 3.6 kg P ha-1 year-1, 14.2 kg K ha-1 year-1) with horticultural systems showing large surpluses resulting from purchased manure. The estimation of N fixation and quantities of nutrients in purchased manures may introduce significant errors in nutrient budgets. Overall, the data illustrate the diversity of management systems in place on organic farms, and suggest that used together with soil analysis, nutrient budgets are a useful tool for improving the long-term sustainability of organic systems
Bose-Einstein condensate collapse: a comparison between theory and experiment
We solve the Gross-Pitaevskii equation numerically for the collapse induced
by a switch from positive to negative scattering lengths. We compare our
results with experiments performed at JILA with Bose-Einstein condensates of
Rb-85, in which the scattering length was controlled using a Feshbach
resonance. Building on previous theoretical work we identify quantitative
differences between the predictions of mean-field theory and the results of the
experiments. Besides the previously reported difference between the predicted
and observed critical atom number for collapse, we also find that the predicted
collapse times systematically exceed those observed experimentally. Quantum
field effects, such as fragmentation, that might account for these
discrepancies are discussed.Comment: 4 pages, 2 figure
An adaptive inelastic magnetic mirror for Bose-Einstein condensates
We report the reflection and focussing of a Bose-Einstein condensate by a new
pulsed magnetic mirror. The mirror is adaptive, inelastic, and of extremely
high optical quality. The deviations from specularity are less than 0.5 mrad
rms, making this the best atomic mirror demonstrated to date. We have also used
the mirror to realize the analog of a beam-expander, producing an ultra-cold
collimated fountain of matter wavesComment: 4 pages, 4 figure
Mean-field analysis of collapsing and exploding Bose-Einstein condensates
The dynamics of collapsing and exploding trapped Bose-Einstein condensat es
caused by a sudden switch of interactions from repulsive to attractive a re
studied by numerically integrating the Gross-Pitaevskii equation with atomic
loss for an axially symmetric trap. We investigate the decay rate of
condensates and the phenomena of bursts and jets of atoms, and compare our
results with those of the experiments performed by E. A. Donley {\it et al.}
[Nature {\bf 412}, 295 (2001)]. Our study suggests that the condensate decay
and the burst production is due to local intermittent implosions in the
condensate, and that atomic clouds of bursts and jets are coherent. We also
predict nonlinear pattern formation caused by the density instability of
attractive condensates.Comment: 7 pages, 8 figures, axi-symmetric results are adde
Characterization of elastic scattering near a Feshbach resonance in rubidium 87
The s-wave scattering length for elastic collisions between 87Rb atoms in the
state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near
1007 G. Experimentally, the scattering length is determined from the mean-field
driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field.
The scattering length is measured as a function of the magnetic field and
agrees with the theoretical expectation. The position and the width of the
resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar
Stability of the trapped nonconservative Gross-Pitaevskii equation with attractive two-body interaction
The dynamics of a nonconservative Gross-Pitaevskii equation for trapped
atomic systems with attractive two-body interaction is numerically
investigated, considering wide variations of the nonconservative parameters,
related to atomic feeding and dissipation. We study the possible limitations of
the mean field description for an atomic condensate with attractive two-body
interaction, by defining the parameter regions where stable or unstable
formation can be found. The present study is useful and timely considering the
possibility of large variations of attractive two-body scattering lengths,
which may be feasible in recent experiments.Comment: 6 pages, 5 figures, submitted to Physical Review
Continuous loading of a magnetic trap
We have realized a scheme for continuous loading of a magnetic trap (MT).
^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap
(MOT). Optical pumping to a metastable state decouples atoms from the cooling
light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking
metastable atoms are trapped in the magnetic quadrupole field provided by the
MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we
load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into
the MT. After loading we can perform optical repumping to realize a MT of
ground state chromium atoms.Comment: 4 pages, 4 figures, version 2, modified references, included
additional detailed information, minor changes in figure 3 and in tex
Collapse dynamics of trapped Bose-Einstein condensates
We analyze the implosion and subsequent explosion of a trapped condensate
after the scattering length is switched to a negative value. Our results
compare very well qualitatively and fairly well quantitatively with the results
of recent experiments at JILA.Comment: 4 pages, 3 figure
Exciting, Cooling And Vortex Trapping In A Bose-Condensed Gas
A straight forward numerical technique, based on the Gross-Pitaevskii
equation, is used to generate a self-consistent description of
thermally-excited states of a dilute boson gas. The process of evaporative
cooling is then modelled by following the time evolution of the system using
the same equation. It is shown that the subsequent rethermalisation of the
thermally-excited state produces a cooler coherent condensate. Other results
presented show that trapping vortex states with the ground state may be
possible in a two-dimensional experimental environment.Comment: 9 pages, 7 figures. It's worth the wait! To be published in Physical
Review A, 1st February 199
Testing quantum correlations in a confined atomic cloud by scattering fast atoms
We suggest measuring one-particle density matrix of a trapped ultracold
atomic cloud by scattering fast atoms in a pure momentum state off the cloud.
The lowest-order probability of the inelastic process, resulting in a pair of
outcoming fast atoms for each incoming one, turns out to be given by a Fourier
transform of the density matrix. Accordingly, important information about
quantum correlations can be deduced directly from the differential scattering
cross-section. A possible design of the atomic detector is also discussed.Comment: 5 RevTex pages, no figures, submitted to PR
- …