528 research outputs found

    Frequency down conversion through Bose condensation of light

    Get PDF
    We propose an experimental set up allowing to convert an input light of wavelengths about 1−2ÎŒm1-2 \mu m into an output light of a lower frequency. The basic principle of operating relies on the nonlinear optical properties exhibited by a microcavity filled with glass. The light inside this material behaves like a 2D interacting Bose gas susceptible to thermalise and create a quasi-condensate. Extension of this setup to a photonic bandgap material (fiber grating) allows the light to behave like a 3D Bose gas leading, after thermalisation, to the formation of a Bose condensate. Theoretical estimations show that a conversion of 1ÎŒm1 \mu m into 1.5ÎŒm1.5 \mu m is achieved with an input pulse of about 1ns1 ns with a peak power of 103W10^3 W, using a fiber grating containing an integrated cavity of size about 500ÎŒm×100ÎŒm2500 \mu m \times 100 \mu m^2.Comment: 4 pages, 1 figure

    Loading a vapor cell magneto-optic trap using light-induced atom desorption

    Get PDF
    Low intensity white light was used to increase the loading rate of 87^{87}Rb atoms into a vapor cell magneto-optic trap by inducing non-thermal desorption of Rb atoms from the stainless steel walls of the vapor cell. An increased Rb partial pressure reached a new equilibrium value in less than 10 seconds after switching on the broadband light source. After the source was turned off, the partial pressure returned to its previous value in 1/e1/e times as short as 10 seconds.Comment: 7 pages, 6 figure

    Boundary of two mixed Bose-Einstein condensates

    Full text link
    The boundary of two mixed Bose-Einstein condensates interacting repulsively was considered in the case of spatial separation at zero temperature. Analytical expressions for density distribution of condensates were obtained by solving two coupled nonlinear Gross-Pitaevskii equations in cases corresponding weak and strong separation. These expressions allow to consider excitation spectrum of a particle confined in the vicinity of the boundary as well as surface waves associated with surface tension.Comment: 6 pages, 3 figures, submitted to Phys.Rev.

    Quantum Limits of Stochastic Cooling of a Bosonic Gas

    Full text link
    The quantum limits of stochastic cooling of trapped atoms are studied. The energy subtraction due to the applied feedback is shown to contain an additional noise term due to atom-number fluctuations in the feedback region. This novel effect is shown to dominate the cooling efficiency near the condensation point. Furthermore, we show first results that indicate that Bose--Einstein condensation could be reached via stochastic cooling.Comment: 5 pages, 3 figures, to appear in Phys. Rev.

    Instabilities in a Two-Component, Species Conserving Condensate

    Full text link
    We consider a system of two species of bosons of equal mass, with interactions Ua(∣x∣)U^{a}(|x|) and Ux(∣x∣)U^{x}(|x|) for bosons of the same and different species respectively. We present a rigorous proof -- valid when the Hamiltonian does not include a species switching term -- showing that, when Ux(∣x∣)>Ua(∣x∣)U^{x}(|x|)>U^{a}(|x|), the ground state is fully "polarized" (consists of atoms of one kind only). In the unpolarized phase the low energy excitation spectrum corresponds to two linearly dispersing modes that are even a nd odd under species exchange. The polarization instability is signaled by the vani shing of the velocity of the odd modes.Comment: To appear in Phys. Rev.

    Rotational master equation for cold laser-driven molecules

    Full text link
    The equations of motion for the molecular rotation are derived for vibrationally cold dimers that are polarized by off-resonant laser light. It is shown that, by eliminating electronic and vibrational degrees of freedom, a quantum master equation for the reduced rotational density operator can be obtained. The coherent rotational dynamics is caused by stimulated Raman transitions, whereas spontaneous Raman transitions lead to decoherence in the motion of the quantized angular momentum. As an example the molecular dynamics for the optical Kerr effect is chosen, revealing decoherence and heating of the molecular rotation.Comment: 11 pages, 5 figures, to appear in Phys. Rev.

    Coupled Bose-Einstein condensate: Collapse for attractive interaction

    Full text link
    We study the collapse in a coupled Bose-Einstein condensate of two types of bosons 1 and 2 under the action of a trap using the time-dependent Gross-Pitaevskii equation. The system may undergo collapse when one, two or three of the scattering lengths aija_{ij} for scattering of boson ii with jj, i,j=1,2i,j = 1, 2 , are negative representing an attractive interaction. Depending on the parameters of the problem a single or both components of the condensate may experience collapse.Comment: 5 pages and 9 figures, small changes mad

    Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities

    Get PDF
    We study the mutual interaction of a Bose-Einstein condensed gas with a single mode of a high-finesse optical cavity. We show how the cavity transmission reflects condensate properties and calculate the self-consistent intra-cavity light field and condensate evolution. Solving the coupled condensate-cavity equations we find that while falling through the cavity, the condensate is adiabatically transfered into the ground state of the periodic optical potential. This allows time dependent non-destructive measurements on Bose-Einstein condensates with intriguing prospects for subsequent controlled manipulation.Comment: 5 pages, 5 figures; revised version: added reference

    Stabilization and pumping of giant vortices in dilute Bose-Einstein condensates

    Full text link
    Recently, it was shown that giant vortices with arbitrarily large quantum numbers can possibly be created in dilute Bose-Einstein condensates by cyclically pumping vorticity into the condensate. However, multiply quantized vortices are typically dynamically unstable in harmonically trapped nonrotated condensates, which poses a serious challenge to the vortex pump procedure. In this theoretical study, we investigate how the giant vortices can be stabilized by the application of a Gaussian potential peak along the vortex core. We find that achieving dynamical stability is feasible up to high quantum numbers. To demonstrate the efficiency of the stabilization method, we simulate the adiabatic creation of an unsplit 20-quantum vortex with the vortex pump.Comment: 8 pages, 6 figures; to be published in J. Low Temp. Phys., online publication available at http://dx.doi.org/10.1007/s10909-010-0216-
    • 

    corecore