540 research outputs found
Frequency down conversion through Bose condensation of light
We propose an experimental set up allowing to convert an input light of
wavelengths about into an output light of a lower frequency. The
basic principle of operating relies on the nonlinear optical properties
exhibited by a microcavity filled with glass. The light inside this material
behaves like a 2D interacting Bose gas susceptible to thermalise and create a
quasi-condensate. Extension of this setup to a photonic bandgap material (fiber
grating) allows the light to behave like a 3D Bose gas leading, after
thermalisation, to the formation of a Bose condensate. Theoretical estimations
show that a conversion of into is achieved with an input
pulse of about with a peak power of , using a fiber grating
containing an integrated cavity of size about .Comment: 4 pages, 1 figure
Loading a vapor cell magneto-optic trap using light-induced atom desorption
Low intensity white light was used to increase the loading rate of Rb
atoms into a vapor cell magneto-optic trap by inducing non-thermal desorption
of Rb atoms from the stainless steel walls of the vapor cell. An increased Rb
partial pressure reached a new equilibrium value in less than 10 seconds after
switching on the broadband light source. After the source was turned off, the
partial pressure returned to its previous value in times as short as 10
seconds.Comment: 7 pages, 6 figure
Boundary of two mixed Bose-Einstein condensates
The boundary of two mixed Bose-Einstein condensates interacting repulsively
was considered in the case of spatial separation at zero temperature.
Analytical expressions for density distribution of condensates were obtained by
solving two coupled nonlinear Gross-Pitaevskii equations in cases corresponding
weak and strong separation. These expressions allow to consider excitation
spectrum of a particle confined in the vicinity of the boundary as well as
surface waves associated with surface tension.Comment: 6 pages, 3 figures, submitted to Phys.Rev.
Quantum Limits of Stochastic Cooling of a Bosonic Gas
The quantum limits of stochastic cooling of trapped atoms are studied. The
energy subtraction due to the applied feedback is shown to contain an
additional noise term due to atom-number fluctuations in the feedback region.
This novel effect is shown to dominate the cooling efficiency near the
condensation point. Furthermore, we show first results that indicate that
Bose--Einstein condensation could be reached via stochastic cooling.Comment: 5 pages, 3 figures, to appear in Phys. Rev.
Instabilities in a Two-Component, Species Conserving Condensate
We consider a system of two species of bosons of equal mass, with
interactions and for bosons of the same and different
species respectively. We present a rigorous proof -- valid when the Hamiltonian
does not include a species switching term -- showing that, when
, the ground state is fully "polarized" (consists of
atoms of one kind only). In the unpolarized phase the low energy excitation
spectrum corresponds to two linearly dispersing modes that are even a nd odd
under species exchange. The polarization instability is signaled by the vani
shing of the velocity of the odd modes.Comment: To appear in Phys. Rev.
Rotational master equation for cold laser-driven molecules
The equations of motion for the molecular rotation are derived for
vibrationally cold dimers that are polarized by off-resonant laser light. It is
shown that, by eliminating electronic and vibrational degrees of freedom, a
quantum master equation for the reduced rotational density operator can be
obtained. The coherent rotational dynamics is caused by stimulated Raman
transitions, whereas spontaneous Raman transitions lead to decoherence in the
motion of the quantized angular momentum. As an example the molecular dynamics
for the optical Kerr effect is chosen, revealing decoherence and heating of the
molecular rotation.Comment: 11 pages, 5 figures, to appear in Phys. Rev.
Coupled Bose-Einstein condensate: Collapse for attractive interaction
We study the collapse in a coupled Bose-Einstein condensate of two types of
bosons 1 and 2 under the action of a trap using the time-dependent
Gross-Pitaevskii equation. The system may undergo collapse when one, two or
three of the scattering lengths for scattering of boson with ,
, are negative representing an attractive interaction. Depending
on the parameters of the problem a single or both components of the condensate
may experience collapse.Comment: 5 pages and 9 figures, small changes mad
Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities
We study the mutual interaction of a Bose-Einstein condensed gas with a
single mode of a high-finesse optical cavity. We show how the cavity
transmission reflects condensate properties and calculate the self-consistent
intra-cavity light field and condensate evolution. Solving the coupled
condensate-cavity equations we find that while falling through the cavity, the
condensate is adiabatically transfered into the ground state of the periodic
optical potential. This allows time dependent non-destructive measurements on
Bose-Einstein condensates with intriguing prospects for subsequent controlled
manipulation.Comment: 5 pages, 5 figures; revised version: added reference
Stabilization and pumping of giant vortices in dilute Bose-Einstein condensates
Recently, it was shown that giant vortices with arbitrarily large quantum
numbers can possibly be created in dilute Bose-Einstein condensates by
cyclically pumping vorticity into the condensate. However, multiply quantized
vortices are typically dynamically unstable in harmonically trapped nonrotated
condensates, which poses a serious challenge to the vortex pump procedure. In
this theoretical study, we investigate how the giant vortices can be stabilized
by the application of a Gaussian potential peak along the vortex core. We find
that achieving dynamical stability is feasible up to high quantum numbers. To
demonstrate the efficiency of the stabilization method, we simulate the
adiabatic creation of an unsplit 20-quantum vortex with the vortex pump.Comment: 8 pages, 6 figures; to be published in J. Low Temp. Phys., online
publication available at http://dx.doi.org/10.1007/s10909-010-0216-
- âŠ