55 research outputs found

    Recent developments in animal models for human herpesvirus 6A and 6B

    Get PDF
    Progress in the identification of suitable animal models for human herpesvirus (HHV)-6A and HHV-6B infections has been slow. Recently, new models have been established, mainly for HHV-6A, which reproduce some pathological features seen in humans. Neuroinflammatory signs were observed in infected marmosets and CD46-transgenic mice; although viral replication was not prominent, persistence of viral DNA and specific immunologic responses were detected, suggesting an immune-mediated pathogenic mechanism. Pig-tailed macaques showed robust viral replication concomitant with acute-phase symptoms, and provided a model to study the effects of HHV-6A on AIDS progression. In humanized mice, viral replication was less evident, but infection led to T-cell alterations. Altogether, these recent developments have opened new perspectives for studying the pathogenic role of HHV-6A in humans. Addresse

    HIV-1 infection and CD4 T cell depletion in the humanized Rag2(-/-)γc(-/- )(RAG-hu) mouse model

    Get PDF
    BACKGROUND: The currently well-established humanized mouse models, namely the hu-PBL-SCID and SCID-hu systems played an important role in HIV pathogenesis studies. However, despite many notable successes, several limitations still exist. They lack multi-lineage human hematopoiesis and a functional human immune system. These models primarily reflect an acute HIV infection with rapid CD4 T cell loss thus limiting pathogenesis studies to a short-term period. The new humanized Rag2(-/-)γc(-/- )mouse model (RAG-hu) created by intrahepatic injection of CD34 hematopoietic stem cells sustains long-term multi-lineage human hematopoiesis and is capable of mounting immune responses. Thus, this model shows considerable promise to study long-term in vivo HIV infection and pathogenesis. RESULTS: Here we demonstrate that RAG-hu mice produce human cell types permissive to HIV-1 infection and that they can be productively infected by HIV-1 ex vivo. To assess the capacity of these mice to sustain long-term infection in vivo, they were infected by either X4-tropic or R5-tropic HIV-1. Viral infection was assessed by PCR, co-culture, and in situ hybridization. Our results show that both X4 and R5 viruses are capable of infecting RAG-hu mice and that viremia lasts for at least 30 weeks. Moreover, HIV-1 infection leads to CD4 T cell depletion in peripheral blood and thymus, thus mimicking key aspects of HIV-1 pathogenesis. Additionally, a chimeric HIV-1 NL4-3 virus expressing a GFP reporter, although capable of causing viremia, failed to show CD4 T cell depletion possibly due to attenuation. CONCLUSION: The humanized RAG-hu mouse model, characterized by its capacity for sustained multi-lineage human hematopoiesis and immune response, can support productive HIV-1 infection. Both T cell and macrophage tropic HIV-1 strains can cause persistent infection of RAG-hu mice resulting in CD4 T cell loss. Prolonged viremia in the context of CD4 T cell depletion seen in this model mirrors the main features of HIV infection in the human. Thus, the RAG-hu mouse model of HIV-1 infection shows great promise for future in vivo pathogenesis studies, evaluation of new drug treatments, vaccines and novel gene therapy strategies

    Beyond the double helix: the multifaceted landscape of extracellular DNA in Staphylococcus aureus biofilms

    Get PDF
    Staphylococcus aureus forms biofilms consisting of cells embedded in a matrix made of proteins, polysaccharides, lipids, and extracellular DNA (eDNA). Biofilm-associated infections are difficult to treat and can promote antibiotic resistance, resulting in negative healthcare outcomes. eDNA within the matrix contributes to the stability, growth, and immune-evasive properties of S. aureus biofilms. eDNA is released by autolysis, which is mediated by murein hydrolases that access the cell wall via membrane pores formed by holin-like proteins. The eDNA content of S. aureus biofilms varies among individual strains and is influenced by environmental conditions, including the presence of antibiotics. eDNA plays an important role in biofilm development and structure by acting as an electrostatic net that facilitates protein-cell and cell-cell interactions. Because of eDNA’s structural importance in biofilms and its ubiquitous presence among S. aureus isolates, it is a potential target for therapeutics. Treatment of biofilms with DNase can eradicate or drastically reduce them in size. Additionally, antibodies that target DNABII proteins, which bind to and stabilize eDNA, can also disperse biofilms. This review discusses the recent literature on the release, structure, and function of eDNA in S. aureus biofilms, in addition to a discussion of potential avenues for targeting eDNA for biofilm eradication

    Humanized Rag1−/−γc−/− Mice Support Multilineage Hematopoiesis and Are Susceptible to HIV-1 Infection via Systemic and Vaginal Routes

    Get PDF
    Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2−/−γc−/−, NOD/SCID, NOD/SCIDγc−/− and NOD/SCIDβ2m−/− strains. Transplantation of these mice with CD34+ human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1−/−γ−/− strain for engraftment by human fetal liver derived CD34+ hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2−/−γc−/− mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1−/−γc−/− mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting

    The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment

    Get PDF
    Substantial improvements have been made in recent years in the ability to engraft human cells and tissues into immunodeficient mice. The use of human hematopoietic stem cells (HSCs) leads to multi-lineage human hematopoiesis accompanied by production of a variety of human immune cell types. Population of murine primary and secondary lymphoid organs with human cells occurs, and long-term engraftment has been achieved. Engrafted cells are capable of producing human innate and adaptive immune responses, making these models the most physiologically relevant humanized animal models to date. New models have been successfully infected by a variety of strains of Human Immunodeficiency Virus Type 1 (HIV-1), accompanied by virus replication in lymphoid and non-lymphoid organs, including the gut-associated lymphoid tissue, the male and female reproductive tracts, and the brain. Multiple forms of virus-induced pathogenesis are present, and human T cell and antibody responses to HIV-1 are detected. These humanized mice are susceptible to a high rate of rectal and vaginal transmission of HIV-1 across an intact epithelium, indicating the potential to study vaccines and microbicides. Antiviral drugs, siRNAs, and hematopoietic stem cell gene therapy strategies have all been shown to be effective at reducing viral load and preventing or reversing helper T cell loss in humanized mice, indicating that they will serve as an important preclinical model to study new therapeutic modalities. HIV-1 has also been shown to evolve in response to selective pressures in humanized mice, thus showing that the model will be useful to study and/or predict viral evolution in response to drug or immune pressures. The purpose of this review is to summarize the findings reported to date on all new humanized mouse models (those transplanted with human HSCs) in regards to HIV-1 sexual transmission, pathogenesis, anti-HIV-1 immune responses, viral evolution, pre- and post-exposure prophylaxis, and gene therapeutic strategies

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure

    Recent developments in animal models for human herpesvirus 6A and 6B

    No full text
    International audienceProgress in the identification of suitable animal models for human herpesvirus (HHV)-6A and HHV-6B infections has been slow. Recently, new models have been established, mainly for HHV-6A, which reproduce some pathological features seen in humans. Neuroinflammatory signs were observed in infected marmosets and CD46-transgenic mice; although viral replication was not prominent, persistence of viral DNA and specific immunologic responses were detected, suggesting an immune-mediated pathogenic mechanism. Pig-tailed macaques showed robust viral replication concomitant with acute-phase symptoms, and provided a model to study the effects of HHV-6A on AIDS progression. In humanized mice, viral replication was less evident, but infection led to T-cell alterations. Altogether, these recent developments have opened new perspectives for studying the pathogenic role of HHV-6A in humans

    Recent developments in animal models for human herpesvirus 6A and 6B

    No full text
    Progress in the identification of suitable animal models for human herpesvirus (HHV)-6A and HHV-6B infections has been slow. Recently, new models have been established, mainly for HHV-6A, which reproduce some pathological features seen in humans. Neuroinflammatory signs were observed in infected marmosets and CD46-transgenic mice; although viral replication was not prominent, persistence of viral DNA and specific immunologic responses were detected, suggesting an immune-mediated pathogenic mechanism. Pig-tailed macaques showed robust viral replication concomitant with acute-phase symptoms, and provided a model to study the effects of HHV-6A on AIDS progression. In humanized mice, viral replication was less evident, but infection led to T-cell alterations. Altogether, these recent developments have opened new perspectives for studying the pathogenic role of HHV-6A in humans. Addresse
    • …
    corecore