63 research outputs found

    Modulation of walking speed by changing optic flow in persons with stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF) speed. The present study aims to: 1) compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2) investigate whether virtual environments (VE) manipulating OF speed can be used to promote volitional changes in walking speed post stroke.</p> <p>Methods</p> <p>Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s), from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek). Instantaneous changes in gait speed (experiment 1) and the ratio of speed changes in the test trial over the control trial (experiment 2) were contrasted between the two groups of subjects.</p> <p>Results</p> <p>When OF speed was changing continuously (experiment 1), an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p < 0.05, T-test) correlation coefficients between gait speed and OF speed, due to less pronounced changes and an altered phasing of gait speed modulation. When OF speed was manipulated discretely (experiment 2), a negative linear relationship was generally observed between the test-control ratio of gait speed and OF speed in healthy and stroke individuals. The slope of this relationship was similar between the stroke and healthy groups (p > 0.05, T-test).</p> <p>Conclusion</p> <p>Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when presented with slower OFs. Manipulation of OF speed using virtual reality technology could be implemented in a gait rehabilitation intervention to promote faster walking speeds after stroke.</p

    Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis

    Get PDF
    BACKGROUND: Virtual reality (VR) is an innovative tool for sensorimotor rehabilitation increasingly being employed in clinical and community settings. Despite the growing interest in VR, few studies have determined the validity of movements made in VR environments with respect to real physical environments. The goal of this study was to compare movements done in physical and virtual environments in adults with motor deficits to those in healthy individuals. METHODS: The participants were 8 healthy adults and 7 adults with mild left hemiparesis due to stroke. Kinematics of functional arm movements involving reaching, grasping and releasing made in physical and virtual environments were analyzed in two phases: 1) reaching and grasping the ball and 2) ball transport and release. The virtual environment included interaction with an object on a 2D computer screen and haptic force feedback from a virtual ball. Temporal and spatial parameters of reaching and grasping were determined for each phase. RESULTS: Individuals in both groups were able to reach, grasp, transport, place and release the virtual and real ball using similar movement strategies. In healthy subjects, reaching and grasping movements in both environments were similar but these subjects used less wrist extension and more elbow extension to place the ball on the virtual vertical surface. Participants with hemiparesis made slower movements in both environments compared to healthy subjects and during transport and placing of the ball, trajectories were more curved and interjoint coordination was altered. Despite these differences, patients with hemiparesis also tended to use less wrist extension during the whole movement and more elbow extension at the end of the placing phase. CONCLUSION: Differences in movements made by healthy subjects in the two environments may be explained by the use of a 2D instead of a 3D virtual environment and the absence of haptic feedback from the VR target. Despite these differences, our findings suggest that both healthy subjects and individuals with motor deficits used similar movement strategies when grasping and placing a ball in the two reality conditions. This suggests that training of arm movements in VR environments may be a valid approach to the rehabilitation of patients with motor disorders

    Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept

    Get PDF
    BACKGROUND: Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback. We developed a "virtual mirror" that displays a realistic full-body avatar that responds to full-body movements in all movement planes in real-time, and that allows for the scaling of visual feedback on movements in real-time. The primary objective of this proof-of-concept study was to assess the ability of healthy subjects to detect scaled feedback on trunk flexion movements. METHODS: The "virtual mirror" was developed by integrating motion capture, virtual reality and projection systems. A protocol was developed to provide both augmented and reduced feedback on trunk flexion movements while sitting and standing. The task required reliance on both visual and proprioceptive feedback. The ability to detect scaled feedback was assessed in healthy subjects (n = 10) using a two-alternative forced choice paradigm. Additionally, immersion in the VR environment and task adherence (flexion angles, velocity, and fluency) were assessed. RESULTS: The ability to detect scaled feedback could be modelled using a sigmoid curve with a high goodness of fit (R2 range 89-98%). The point of subjective equivalence was not significantly different from 0 (i.e. not shifted), indicating an unbiased perception. The just noticeable difference was 0.035 +/- 0.007, indicating that subjects were able to discriminate different scaling levels consistently. VR immersion was reported to be good, despite some perceived delays between movements and VR projections. Movement kinematic analysis confirmed task adherence. CONCLUSIONS: The new "virtual mirror" extends existing VR systems for motor and pain rehabilitation by enabling the use of realistic full-body avatars and scaled feedback. Proof-of-concept was demonstrated for the assessment of body perception during active movement in healthy controls. The next step will be to apply this system to assessment of body perception disturbances in patients with chronic pain

    Virtual reality environments for post-stroke arm rehabilitation

    Get PDF
    INTRODUCTION: Optimal practice and feedback elements are essential requirements for maximal motor recovery in patients with motor deficits due to central nervous system lesions. METHODS: A virtual environment (VE) was created that incorporates practice and feedback elements necessary for maximal motor recovery. It permits varied and challenging practice in a motivating environment that provides salient feedback. RESULTS: The VE gives the user knowledge of results feedback about motor behavior and knowledge of performance feedback about the quality of pointing movements made in a virtual elevator. Movement distances are related to length of body segments. CONCLUSION: We describe an immersive and interactive experimental protocol developed in a virtual reality environment using the CAREN system. The VE can be used as a training environment for the upper limb in patients with motor impairments

    Cytochrome P450 CYP1B1 activity in renal cell carcinoma

    Get PDF
    Renal cell carcinoma (RCC) is the most common malignancy of the kidney and has a poor prognosis due to its late presentation and resistance to current anticancer drugs. One mechanism of drug resistance, which is potentially amenable to therapeutic intervention, is based on studies in our laboratory. CYP1B1 is a cytochrome P450 enzyme overexpressed in a variety of malignant tumours. Our studies are now elucidating a functional role for CYP1B1 in drug resistance. Cytochrome P450 reductase (P450R) is required for optimal metabolic activity of CYP1B1. Both CYP1B1 and P450R can catalyse the biotransformation of anticancer drugs at the site of the tumour. In this investigation, we determined the expression of CYP1B1 and P450R in samples of normal kidney and RCC (11 paired normal and tumour and a further 15 tumour samples). The O-deethylation of ethoxyresorufin to resorufin was used to measure CYP1B1 activity in RCC. Cytochrome P450 reductase activity was determined by following the reduction of cytochrome c at 550 nm. The key finding of this study was the presence of active CYP1B1 in 70% of RCC. Coincubation with the CYP1B1 inhibitor alpha-naphthoflavone (10nM) inhibited this activity. No corresponding CYP1B1 activity was detected in any of the normal tissue examined (n = 11). Measurable levels of active P450R were determined in all normal (n = 11) and tumour samples (n = 26). The presence of detectable CYP1B1, which is capable of metabolising anticancer drugs in tumour cells, highlights a novel target for therapeutic intervention

    The reliability of three-dimensional scapular attitudes in healthy people and people with shoulder impingement syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal scapular displacements during arm elevation have been observed in people with shoulder impingement syndrome. These abnormal scapular displacements were evaluated using different methods and instruments allowing a 3-dimensional representation of the scapular kinematics. The validity and the intrasession reliability have been shown for the majority of these methods for healthy people. However, the intersession reliability on healthy people and people with impaired shoulders is not well documented. This measurement property needs to be assessed before using such methods in longitudinal comparative studies. The objective of this study is to evaluate the intra and intersession reliability of 3-dimensional scapular attitudes measured at different arm positions in healthy people and to explore the same measurement properties in people with shoulder impingement syndrome using the Optotrak Probing System.</p> <p>Methods</p> <p>Three-dimensional scapular attitudes were measured twice (test and retest interspaced by one week) on fifteen healthy subjects (mean age 37.3 years) and eight subjects with subacromial shoulder impingement syndrome (mean age 46.1 years) in three arm positions (arm at rest, 70° of humerothoracic flexion and 90° of humerothoracic abduction) using the Optotrak Probing System. Two different methods of calculation of 3-dimensional scapular attitudes were used: relative to the position of the scapula at rest and relative to the trunk. Intraclass correlation coefficient (ICC) and standard error of measure (SEM) were used to estimate intra and intersession reliability.</p> <p>Results</p> <p>For both groups, the reliability of the three-dimensional scapular attitudes for elevation positions was very good during the same session (ICCs from 0.84 to 0.99; SEM from 0.6° to 1.9°) and good to very good between sessions (ICCs from 0.62 to 0.97; SEM from 1.2° to 4.2°) when using the method of calculation relative to the trunk. Higher levels of intersession reliability were found for the method of calculation relative to the trunk in anterior-posterior tilting at 70° of flexion compared to the method of calculation relative to the scapula at rest.</p> <p>Conclusion</p> <p>The estimation of three-dimensional scapular attitudes using the method of calculation relative to the trunk is reproducible in the three arm positions evaluated and can be used to document the scapular behavior.</p
    • …
    corecore