219 research outputs found

    Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs

    Get PDF
    BACKGROUND: Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. RESULTS: "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene predicion. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. CONCLUSION: Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes

    Tracking the evolution of alternatively spliced exons within the Dscam family

    Get PDF
    BACKGROUND: The Dscam gene in the fruit fly, Drosophila melanogaster, contains twenty-four exons, four of which are composed of tandem arrays that each undergo mutually exclusive alternative splicing (4, 6, 9 and 17), potentially generating 38,016 protein isoforms. This degree of transcript diversity has not been found in mammalian homologs of Dscam. We examined the molecular evolution of exons within this gene family to locate the point of divergence for this alternative splicing pattern. RESULTS: Using the fruit fly Dscam exons 4, 6, 9 and 17 as seed sequences, we iteratively searched sixteen genomes for homologs, and then performed phylogenetic analyses of the resulting sequences to examine their evolutionary history. We found homologs in the nematode, arthropod and vertebrate genomes, including homologs in several vertebrates where Dscam had not been previously annotated. Among these, only the arthropods contain homologs arranged in tandem arrays indicative of mutually exclusive splicing. We found no homologs to these exons within the Arabidopsis, yeast, tunicate or sea urchin genomes but homologs to several constitutive exons from fly Dscam were present within tunicate and sea urchin. Comparing the rate of turnover within the tandem arrays of the insect taxa (fruit fly, mosquito and honeybee), we found the variants within exons 4 and 17 are well conserved in number and spatial arrangement despite 248–283 million years of divergence. In contrast, the variants within exons 6 and 9 have undergone considerable turnover since these taxa diverged, as indicated by deeply branching taxon-specific lineages. CONCLUSION: Our results suggest that at least one Dscam exon array may be an ancient duplication that predates the divergence of deuterostomes from protostomes but that there is no evidence for the presence of arrays in the common ancestor of vertebrates. The different patterns of conservation and turnover among the Dscam exon arrays provide a striking example of how a gene can evolve in a modular fashion rather than as a single unit

    Rates of ethanol metabolism decrease in sons of alcoholics following a priming dose of ethanol

    Get PDF
    Rapid changes in rates of ethanol metabolism in response to acute ethanol administration have been observed in animals and humans. To examine whether this phenomenon might vary by risk for alcoholism, 23 young men with a positive family history of alcoholism (FHP) were compared to 15 young men without a family history of alcoholism (FHN). Rates of ethanol metabolism were measured in all subjects first after an initial ethanol dose (0.85 g/kg) and then, several hours later, a second dose (0.3 g/kg), and the two rates were compared. The two groups of subjects were similar in their histories of ethanol consumption. FHP subjects demonstrated faster initial rates of ethanol metabolism, 148 ± 36 mg/kg/hr, compared to FHN subjects, 124 ± 18 mg/kg/hr, p=.01. However, FHN subjects increased their rate of metabolism by 10 ± 27 percent compared to a decrease of -15 ± 24 percent in FHP subjects, p =.007. Fifty-two percent of the FHP and none of the FHN subjects exhibited a decline in metabolic rate of 20% or more, p=.0008. Since a significant proportion of FHP subjects exhibited a decrease in the second rate of ethanol metabolism, these preliminary data might help to partly explain why FHP individuals differ in their sensitivity to ethanol and are more likely to develop alcohol dependence

    A semiquantitative metric for evaluating clinical actionability of incidental or secondary findings from genome-scale sequencing

    Get PDF
    As genome-scale sequencing is increasingly applied in clinical scenarios, a wide variety of genomic findings will be discovered as secondary or incidental findings, and there is debate about how they should be handled. The clinical actionability of such findings varies, necessitating standardized frameworks for a priori decision making about their analysis

    Return of non-ACMG recommended incidental genetic findings to pediatric patients: Considerations and opportunities from experiences in genomic sequencing

    Get PDF
    BACKGROUND: The uptake of exome/genome sequencing has introduced unexpected testing results (incidental findings) that have become a major challenge for both testing laboratories and providers. While the American College of Medical Genetics and Genomics has outlined guidelines for laboratory management of clinically actionable secondary findings, debate remains as to whether incidental findings should be returned to patients, especially those representing pediatric populations. METHODS: The Sequencing Analysis and Diagnostic Yield working group in the Clinical Sequencing Evidence-Generating Research Consortium has collected a cohort of pediatric patients found to harbor a genomic sequencing-identified non-ACMG-recommended incidental finding. The incidental variants were not thought to be associated with the indication for testing and were disclosed to patients and families. RESULTS: In total, 23 non-ACMG-recommended incidental findings were identified in 21 pediatric patients included in the study. These findings span four different research studies/laboratories and demonstrate differences in incidental finding return rate across study sites. We summarize specific cases to highlight core considerations that surround identification and return of incidental findings (uncertainty of disease onset, disease severity, age of onset, clinical actionability, and personal utility), and suggest that interpretation of incidental findings in pediatric patients can be difficult given evolving phenotypes. Furthermore, return of incidental findings can benefit patients and providers, but do present challenges. CONCLUSIONS: While there may be considerable benefit to return of incidental genetic findings, these findings can be burdensome to providers and present risk to patients. It is important that laboratories conducting genomic testing establish internal guidelines in anticipation of detection. Moreover, cross-laboratory guidelines may aid in reducing the potential for policy heterogeneity across laboratories as it relates to incidental finding detection and return. However, future discussion is required to determine whether cohesive guidelines or policy statements are warranted

    Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A

    Get PDF
    International audienceAims/Hypothesis: Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. Principal Findings: We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt-and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine 307 phosphorylation-events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A.Conclusions/Interpretation: Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A

    Evaluating parents’ decisions about next-generation sequencing for their child in the NC NEXUS (North Carolina Newborn Exome Sequencing for Universal Screening) study: a randomized controlled trial protocol

    Get PDF
    Abstract Background Using next-generation sequencing (NGS) in newborn screening (NBS) could expand the number of genetic conditions detected pre-symptomatically, simultaneously challenging current precedents, raising ethical concerns, and extending the role of parental decision-making in NBS. The NC NEXUS (Newborn Exome Sequencing for Universal Screening) study seeks to assess the technical possibilities and limitations of NGS-NBS, devise and evaluate a framework to convey various types of genetic information, and develop best practices for incorporating NGS-NBS into clinical care. The study is enrolling both a healthy cohort and a cohort diagnosed with known disorders identified through recent routine NBS. It uses a novel age-based metric to categorize a priori the large amount of data generated by NGS-NBS and interactive online decision aids to guide parental decision-making. Primary outcomes include: (1) assessment of NGS-NBS sensitivity, (2) decision regret, and (3) parental decision-making about NGS-NBS, and, for parents randomized to have the option of requesting them, additional findings (diagnosed and healthy cohorts). Secondary outcomes assess parents’ reactions to the study and to decision-making. Methods/design Participants are parents and children in a well-child cohort recruited from a prenatal clinic and a diagnosed cohort recruited from pediatric clinics that treat children with disorders diagnosed through traditional NBS (goal of 200 children in each cohort). In phase 1, all parent participants use an online decision aid to decide whether to accept NGS-NBS for their child and provide consent for NGS-NBS. In phase 2, parents who consent to NGS-NBS are randomized to a decision arm or control arm (2:1 allocation) and learn their child’s NGS-NBS results, which include conditions from standard (non-NGS) NBS plus other highly actionable childhood-onset conditions. Parents in the decision arm use a second decision aid to make decisions about additional results from their child’s sequencing. In phase 3, decision arm participants learn additional results they have requested. Online questionnaires are administered at up to five time points. Discussion NC NEXUS will use a rigorous interdisciplinary approach designed to collect rich data to inform policy, practice, and future research. Trial registration clinicaltrials.gov, NCT02826694 . Registered on 11 July, 2016

    Newborn Sequencing in Genomic Medicine and Public Health

    Get PDF
    The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening

    Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes

    Get PDF
    BACKGROUND: A substantial body of research supports a genetic involvement in autism. Furthermore, results from various genomic screens implicate a region on chromosome 7q31 as harboring an autism susceptibility variant. We previously narrowed this 34 cM region to a 3 cM critical region (located between D7S496 and D7S2418) using the Collaborative Linkage Study of Autism (CLSA) chromosome 7 linked families. This interval encompasses about 4.5 Mb of genomic DNA and encodes over fifty known and predicted genes. Four candidate genes (NRCAM, LRRN3, KIAA0716, and LAMB1) in this region were chosen for examination based on their proximity to the marker most consistently cosegregating with autism in these families (D7S1817), their tissue expression patterns, and likely biological relevance to autism. METHODS: Thirty-six intronic and exonic single nucleotide polymorphisms (SNPs) and one microsatellite marker within and around these four candidate genes were genotyped in 30 chromosome 7q31 linked families. Multiple SNPs were used to provide as complete coverage as possible since linkage disequilibrium can vary dramatically across even very short distances within a gene. Analyses of these data used the Pedigree Disequilibrium Test for single markers and a multilocus likelihood ratio test. RESULTS: As expected, linkage disequilibrium occurred within each of these genes but we did not observe significant LD across genes. None of the polymorphisms in NRCAM, LRRN3, or KIAA0716 gave p < 0.05 suggesting that none of these genes is associated with autism susceptibility in this subset of chromosome 7-linked families. However, with LAMB1, the allelic association analysis revealed suggestive evidence for a positive association, including one individual SNP (p = 0.02) and three separate two-SNP haplotypes across the gene (p = 0.007, 0.012, and 0.012). CONCLUSIONS: NRCAM, LRRN3, KIAA0716 are unlikely to be involved in autism. There is some evidence that variation in or near the LAMB1 gene may be involved in autism
    • …
    corecore