1,551 research outputs found

    On Charge-3 Cyclic Monopoles

    Get PDF
    We determine the spectral curve of charge 3 BPS su(2) monopoles with C_3 cyclic symmetry. The symmetry means that the genus 4 spectral curve covers a (Toda) spectral curve of genus 2. A well adapted homology basis is presented enabling the theta functions and monopole data of the genus 4 curve to be given in terms of genus 2 data. The Richelot correspondence, a generalization of the arithmetic mean, is used to solve for this genus 2 curve. Results of other approaches are compared.Comment: 34 pages, 16 figures. Revision: Abstract added and a few small change

    Dispersion of the high-energy phonon modes in Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4

    Full text link
    The dispersion of the high-energy phonon modes in the electron doped high-temperature superconductor Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4 has been studied by inelastic neutron scattering. The frequencies of phonon modes with Cu-O bond-stretching character drop abruptly when going from the Brillouin zone center along the [100]-direction; this dispersion is qualitatively similar to observations in the hole-doped cuprates. We also find a softening of the bond-stretching modes along the [110]-direction but which is weaker and exhibits a sinusoidal dispersion. The phonon anomalies are discussed in comparison to hole-doped cuprate superconductors and other metallic perovskites

    Magnetic shape-memory effect in SrRuO3_3

    Full text link
    Like most perovskites, SrRuO3_3 exhibits structural phase transitions associated with rotations of the RuO6_6 octahedra. The application of moderate magnetic fields in the ferromagnetically ordered state allows one to fully control these structural distortions, although the ferromagnetic order occurs at six times lower temperature than the structural distortion. Our neutron diffraction and macroscopic measurements unambiguously show that magnetic fields rearrange structural domains, and that for the field along a cubic [110]c_c direction a fully detwinned crystal is obtained. Subsequent heating above the Curie temperature causes a magnetic shape-memory effect, where the initial structural domains recover

    Phenomenology of a light scalar: the dilaton

    Get PDF
    We make use of the language of non-linear realizations to analyze electro-weak symmetry breaking scenarios in which a light dilaton emerges from the breaking of a nearly conformal strong dynamics, and compare the phenomenology of the dilaton to that of the well motivated light composite Higgs scenario. We argue that -- in addition to departures in the decay/production rates into massless gauge bosons mediated by the conformal anomaly -- characterizing features of the light dilaton scenario (as well as other scenarios admitting a light CP-even scalar not directly related to the breaking of the electro-weak symmetry) are off-shell events at high invariant mass involving two longitudinally polarized vector bosons and a dilaton, and tree-level flavor violating processes. Accommodating both electro-weak precision measurements and flavor constraints appears especially challenging in the ambiguous scenario in which the Higgs and the dilaton fields strongly mix. We show that warped higgsless models of electro-weak symmetry breaking are explicit and tractable realizations of this limiting case. The relation between the naive radion profile often adopted in the study of holographic realizations of the light dilaton scenario and the actual dynamical dilaton field is clarified in the Appendix.Comment: 21 page

    Thermal conductivity of R2CuO4, with R = La, Pr and Gd

    Full text link
    We present measurements of the in-plane kappa_ab and out-of-plane kappa_c thermal conductivity of Pr2CuO4 and Gd2CuO4 single crystals. The anisotropy gives strong evidence for a large contribution of magnetic excitations to kappa_ab i.e. for a heat current within the CuO2 planes. However, the absolute values of kappa_mag are lower than previous results on La2CuO4. These differences probably arise from deviations from the nominal oxygen stoichiometry. This has a drastic influence on kappa_mag, which is shown by an investigation of a La2CuO4+delta polycrystal.Comment: 2 pages, 1 figure; presented at SCES200

    Competitions in layered ruthenates: ferro- vs. antiferromagnetism and triplet vs. singlet pairing

    Full text link
    Ru based perovskites demonstrate an amazing richness in their magnetic properties, including 3D and quasi-2D ferromagnetism, antiferromagnetism, and unconventional superconductivity. Tendency to ferromagnetism, stemming from the unusually large involvement of O in magnetism in ruthenates, leads to ferromagnetic spin fluctuations in Sr2RuO4 and eventually to p-wave superconductivity. A related compound Ca2RuO4 was measured to be antiferromagnetic, suggesting a possibility of antiferromagnetic fluctuations in Sr2RuO4 as well. Here we report first principles calculations that demonstrate that in both compounds the ferro- and antiferromagnetic fluctuations coexist, leading to an actual instability in Ca2RuO4 and to a close competition between p-wave and d-wave superconducting symmetries in Sr2RuO4. The antiferromagnetism in this system appears to be mostly related with the nesting, which is the strongest at Q=(2pi/3,2pi/3,0). Surprisingly, for the Fermiology of Sr2RuO4 the p-wave state wins over the d-wave one everywhere except in close vicinity of the antiferromagnetic instability. The most stable state within the d-wave channel has vanishing order parameter at one out of three Fermi surfaces in Sr2RuO4, while in the p channel its amplitude is comparable at all three of them.Comment: 4 Revtex pages with 4 embedded postscript figure. Some figures are color, but should look OK in B&W as wel

    Evidence for Multiple Phase Transitions in La_1-xCa_xCoO_3

    Full text link
    We report thermal-expansion and specific-heat data of the series La_1-xCa_xCoO_3 for 0 <= x <= 0.3. For x = 0 the thermal-expansion coefficient alpha(T) features a pronounced maximum around T = 50 K caused by a temperature-dependent spin-state transition from a low-spin state (S=0) at low temperatures towards a higher spin state of the Co^3+ ions. The partial substitution of the La^3+ ions by divalent Ca^2+ ions causes drastic changes in the macroscopic properties of LaCoO_3. Around x ~ 0.125 the large maximum in alpha(T) has completely vanished. With further increasing x three different anomalies develop

    Two-dimensional incommensurate magnetic fluctuations in Sr2_2(Ru0.99_{0.99}Ti0.01_{0.01})O4_4

    Full text link
    We investigate the imaginary part of the wave vector dependent dynamic spin susceptibility in Sr2_2(Ru0.99_{0.99}Ti0.01_{0.01})O4_4 as a function of temperature using neutron scattering. At T=5 K, two-dimensional incommensurate (IC) magnetic fluctuations are clearly observed around Qc=(0.3,0.3,L)\mathbf{Q}_\text{c}=(0.3,0.3,L) up to approximately 60 meV energy transfer. We find that the IC excitations disperse to ridges around the (π,π)(\pi,\pi) point. Below 50 K, the energy and temperature dependent excitations are well described by the phenomenological response function for a Fermi liquid system with a characteristic energy of 4.0(1) meV. Although the wave vector dependence of the IC magnetic fluctuations in Sr2_2(Ru0.99_{0.99}Ti0.01_{0.01})O4_4 is similar to that in the Fermi liquid state of the parent compound, Sr2_2RuO4_4, the magnetic fluctuations are clearly suppressed by the Ti-doping.Comment: 5 pages, 4 figure
    corecore