3 research outputs found

    Nanoporous Poly(3,4-ethylenedioxythiophene) Derived from Polymeric Bicontinuous Microemulsion Templates

    No full text
    Nanoporous Poly(3,4-ethylenedioxythiophene) Derived from Polymeric Bicontinuous Microemulsion Template

    Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent

    No full text
    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. Here, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into the backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. We postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone

    Chemical Recycling of Polybutadiene Rubber with Tailored Depolymerization Enabled by Microencapsulated Metathesis Catalysts

    No full text
    The effective management of plastic waste streams to prevent plastic land and water pollution is a growing problem that is also one of the most important challenges in polymer science today. Polymer materials that are stable over their lifetime and can also be cheaply recycled or repurposed as desired could more easily be diverted from waste streams. However, this is difficult for most commodity plastics. It is especially difficult to conceive this with intractable, cross-linked polymers such as rubbers. In this work, we explore the utility of microencapsulated Grubbs’ catalysts for the in-situ depolymerization and reprocessing of polybutadiene (PB) rubber. Second-generation Hoveyda-Grubbs catalyst (HG2) contained within glassy thermoplastic microspheres can be dispersed in PB rubber below the microsphere’s glass transition temperature (Tg) without adverse depolymerization, evidenced by rubber with and without these microspheres obtaining similar shear storage moduli of ≈16 and ≈28 kPa, respectively. The thermoplastic’s Tg can be used to tune the depolymerization temperature, via release of HG2 into the rubber matrix. For example, using poly(lactic acid) (PLA) vs polysulfone results in an 85 and 162 °C depolymerization temperature, respectively. Liquefaction of rubber to a mixture of small molecules and oligomers is demonstrated using a 0.01 mol % catalyst loading using PLA as the encapsulant. At that same catalyst loading, depolymerization occurs to a greater extent in comparison to two ex-situ approaches, including a conventional solvent-assisted method, where it occurs at roughly twice the extent at each given catalyst loading. In addition, depolymerization of the microsphere-loaded rubbers was demonstrated for samples stored under nitrogen for 23 days. Lastly, we show that the depolymerized products can be reprocessed back into solid rubber with a shear storage modulus of ≈32 kPa. Thus, we envision that this approach could be used to recycle and reuse cross-linked rubbers at the end of their product lifetime
    corecore