6 research outputs found

    Hydromethylation of Unactivated Olefins

    No full text
    A solution to the classic unsolved problem of olefin hydromethylation is presented. This highly chemoselective method can tolerate labile and reactive chemical functionalities and uses a simple set of reagents. An array of olefins, including mono-, di-, and trisubstituted olefins, are all smoothly hydromethylated. This mild protocol can be used to simplify the synthesis of a specific target or to directly “edit” complex natural products and other advanced materials. The method is also amenable to the simple installation of radioactive and stable labeled methyl groups

    Hydromethylation of Unactivated Olefins

    No full text
    A solution to the classic unsolved problem of olefin hydromethylation is presented. This highly chemoselective method can tolerate labile and reactive chemical functionalities and uses a simple set of reagents. An array of olefins, including mono-, di-, and trisubstituted olefins, are all smoothly hydromethylated. This mild protocol can be used to simplify the synthesis of a specific target or to directly “edit” complex natural products and other advanced materials. The method is also amenable to the simple installation of radioactive and stable labeled methyl groups

    Hydromethylation of Unactivated Olefins

    No full text
    A solution to the classic unsolved problem of olefin hydromethylation is presented. This highly chemoselective method can tolerate labile and reactive chemical functionalities and uses a simple set of reagents. An array of olefins, including mono-, di-, and trisubstituted olefins, are all smoothly hydromethylated. This mild protocol can be used to simplify the synthesis of a specific target or to directly “edit” complex natural products and other advanced materials. The method is also amenable to the simple installation of radioactive and stable labeled methyl groups

    Hydromethylation of Unactivated Olefins

    No full text
    A solution to the classic unsolved problem of olefin hydromethylation is presented. This highly chemoselective method can tolerate labile and reactive chemical functionalities and uses a simple set of reagents. An array of olefins, including mono-, di-, and trisubstituted olefins, are all smoothly hydromethylated. This mild protocol can be used to simplify the synthesis of a specific target or to directly “edit” complex natural products and other advanced materials. The method is also amenable to the simple installation of radioactive and stable labeled methyl groups

    Hydromethylation of Unactivated Olefins

    No full text
    A solution to the classic unsolved problem of olefin hydromethylation is presented. This highly chemoselective method can tolerate labile and reactive chemical functionalities and uses a simple set of reagents. An array of olefins, including mono-, di-, and trisubstituted olefins, are all smoothly hydromethylated. This mild protocol can be used to simplify the synthesis of a specific target or to directly “edit” complex natural products and other advanced materials. The method is also amenable to the simple installation of radioactive and stable labeled methyl groups

    Discovery of Pyrrolidine-Containing GPR40 Agonists: Stereochemistry Effects a Change in Binding Mode

    No full text
    A novel series of pyrrolidine-containing GPR40 agonists is described as a potential treatment for type 2 diabetes. The initial pyrrolidine hit was modified by moving the position of the carboxylic acid, a key pharmacophore for GPR40. Addition of a 4-<i>cis</i>-CF<sub>3</sub> to the pyrrolidine improves the human GPR40 binding <i>K</i><sub>i</sub> and agonist efficacy. After further optimization, the discovery of a minor enantiomeric impurity with agonist activity led to the finding that enantiomers <b>(</b><i><b>R,R</b></i><b>)-68</b> and <b>(</b><i><b>S,S</b></i><b>)-68</b> have differential effects on the radioligand used for the binding assay, with <b>(</b><i><b>R,R</b></i><b>)-68</b> potentiating the radioligand and <b>(</b><i><b>S,S</b></i><b>)-68</b> displacing the radioligand. Compound <b>(</b><i><b>R</b></i>,<i><b>R</b></i><b>)-68</b> activates both G<sub>q</sub>-coupled intracellular Ca<sup>2+</sup> flux and G<sub>s</sub>-coupled cAMP accumulation. This signaling bias results in a dual mechanism of action for compound <b>(</b><i><b>R</b></i>,<i><b>R</b></i><b>)-68</b>, demonstrating glucose-dependent insulin and GLP-1 secretion in vitro. In vivo, compound <b>(</b><i><b>R</b></i>,<i><b>R</b></i><b>)-68</b> significantly lowers plasma glucose levels in mice during an oral glucose challenge, encouraging further development of the series
    corecore