294 research outputs found

    Generation of frequency sidebands on single photons with indistinguishability from quantum dots

    Get PDF
    Generation and manipulation of the quantum state of a single photon is at the heart of many quantum information protocols. There has been growing interest in using phase modulators as quantum optics devices that preserve coherence. In this Letter, we have used an electro-optic phase modulator to shape the state vector of single photons emitted by a quantum dot to generate new frequency components (modes) and explicitly demonstrate that the phase modulation process agrees with the theoretical prediction at a single photon level. Through two-photon interference measurements we show that for an output consisting of three modes (the original mode and two sidebands), the indistinguishability of the mode engineered photon, measured through the secondorder intensity correlation (g2(0)) is preserved. This work demonstrates a robust means to generate a photonic qubit or more complex state (e.g., a qutrit) for quantum communication applications by encoding information in the sidebands without the loss of coherence

    Stimulated Raman spin coherence and spin-flip induced hole burning in charged GaAs quantum dots

    Full text link
    High-resolution spectral hole burning (SHB) in coherent nondegenerate differential transmission spectroscopy discloses spin-trion dynamics in an ensemble of negatively charged quantum dots. In the Voigt geometry, stimulated Raman spin coherence gives rise to Stokes and anti-Stokes sidebands on top of the trion spectral hole. The prominent feature of an extremely narrow spike at zero detuning arises from spin population pulsation dynamics. These SHB features confirm coherent electron spin dynamics in charged dots, and the linewidths reveal spin spectral diffusion processes.Comment: 5 pages, 5 figure

    Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots

    Full text link
    We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Raman spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.Comment: 4 pages, 3 figures. Minor modification

    Creation of Entanglement between Two Electron Spins Induced by Many Spin Ensemble Excitations

    Full text link
    We theoretically explore the possibility of creating spin entanglement by simultaneously coupling two electronic spins to a nuclear ensemble. By microscopically modeling the spin ensemble with a single mode boson field, we use the time-dependent Fr\"{o}hlich transformation (TDFT) method developed most recently [Yong Li, C. Bruder, and C. P. Sun, Phys. Rev. A \textbf{75}, 032302 (2007)] to calculate the effective coupling between the two spins. Our investigation shows that the total system realizes a solid state based architecture for cavity QED. Exchanging such kind effective boson in a virtual process can result in an effective interaction between two spins. It is discovered that a maximum entangled state can be obtained when the velocity of the electrons matches the initial distance between them in a suitable way. Moreover, we also study how the number of collective excitations influences the entanglement. It is shown that the larger the number of excitation is, the less the two spins entangle each other.Comment: 8 pages, 4 figure

    Characteristic molecular properties of one-electron double quantum rings under magnetic fields

    Full text link
    The molecular states of conduction electrons in laterally coupled quantum rings are investigated theoretically. The states are shown to have a distinct magnetic field dependence, which gives rise to periodic fluctuations of the tunnel splitting and ring angular momentum in the vicinity of the ground state crossings. The origin of these effects can be traced back to the Aharonov-Bohm oscillations of the energy levels, along with the quantum mechanical tunneling between the rings. We propose a setup using double quantum rings which shows that Aharonov-Bohm effects can be observed even if the net magnetic flux trapped by the carriers is zero.Comment: 16 pages (iopart format), 10 figures, accepted in J.Phys.Cond.Mat

    Examining the influence of turbulence on viscosity measurements of molten germanium under reduced gravity

    Get PDF
    The thermophysical properties of liquid germanium were recently measured both in parabolic flight experiments and on the ISS in the ISS-EML facility. The viscosity measurements differed between the reduced gravity experiments and the literature values. Since the oscillating drop method has been widely used in EML, further exploration into this phenomenon was of interest. Models of the magnetohydrodynamic flow indicated that turbulence was present during the measurement in the ISS-EML facility, which accounts for the observed difference

    Triplet-Singlet Spin Relaxation via Nuclei in a Double Quantum Dot

    Full text link
    The spin of a confined electron, when oriented originally in some direction, will lose memory of that orientation after some time. Physical mechanisms leading to this relaxation of spin memory typically involve either coupling of the electron spin to its orbital motion or to nuclear spins. Relaxation of confined electron spin has been previously measured only for Zeeman or exchange split spin states, where spin-orbit effects dominate relaxation, while spin flips due to nuclei have been observed in optical spectroscopy studies. Using an isolated GaAs double quantum dot defined by electrostatic gates and direct time domain measurements, we investigate in detail spin relaxation for arbitrary splitting of spin states. Results demonstrate that electron spin flips are dominated by nuclear interactions and are slowed by several orders of magnitude when a magnetic field of a few millitesla is applied. These results have significant implications for spin-based information processing

    Demonstration of the effect of stirring on nucleation from experiments on the International Space Station using the ISS-EML facility

    Get PDF
    The effect of fluid flow on crystal nucleation in supercooled liquids is not well understood. The variable density and temperature gradients in the liquid make it difficult to study this under terrestrial gravity conditions. Nucleation experiments were therefore made in a microgravity environment using the Electromagnetic Levitation facility on the International Space Station on a bulk glass-forming Zr57Cu15.4Ni12.6Al10Nb5 (Vit106), as well as Cu50Zr50 and the quasicrystal-forming Ti39.5Zr39.5Ni21 liquids. The maximum supercooling temperatures for each alloy were measured as a function of controlled stirring by applying various combinations of radio frequency positioner and heater voltages to the water-cooled copper coils. The flow patterns were simulated from the known parameters for the coil and the levitated samples. The maximum nucleation temperatures increased systematically with increased fluid flow in the liquids for Vit106, but stayed nearly unchanged for the other two. These results are consistent with the predictions from the coupled-flux model for nucleation.Comment: 21 pages, 2 figure
    • …
    corecore