1,894 research outputs found

    Level density of the H\'enon-Heiles system above the critical barrier Energy

    Get PDF
    We discuss the coarse-grained level density of the H\'enon-Heiles system above the barrier energy, where the system is nearly chaotic. We use periodic orbit theory to approximate its oscillating part semiclassically via Gutzwiller's semiclassical trace formula (extended by uniform approximations for the contributions of bifurcating orbits). Including only a few stable and unstable orbits, we reproduce the quantum-mechanical density of states very accurately. We also present a perturbative calculation of the stabilities of two infinite series of orbits (Rn_n and Lm_m), emanating from the shortest librating straight-line orbit (A) in a bifurcation cascade just below the barrier, which at the barrier have two common asymptotic Lyapunov exponents χR\chi_{\rm R} and χL\chi_{\rm L}.Comment: LaTeX, style FBS (Few-Body Systems), 6pp. 2 Figures; invited talk at "Critical stability of few-body quantum systems", MPI-PKS Dresden, Oct. 17-21, 2005; corrected version: passages around eq. (6) and eqs. (12),(13) improve

    Spontaneous bleeding in a patient with malignant lymphoma: A case of acquired hemophilia

    Get PDF
    Background: Acquired hemophilia is a rare condition which can be associated with lymphoproliferative disease. Case Report: Eleven yea rs after the diagnosis of immunocytoma had been made, a 72-year-old man developed a high-titer factor VIII inhibitor. At this time, the lymphoma was without significant progress and there was no paraprotein in the serum. Partial thromboplastin time (PTT) was 83 a, factor-VIII clotting activity was <1%, and inhibitor level was 50.4 Bethesda units. The patient presented with spontaneous hematomas in the skin and musculature of the extremities. Following combination chemotherapy with cyclophosphamide, vincristine and prednisolone (COP), there was a prompt disappearance of the inhibitor and normalization of coagulation; however, the patient developed serious infectious complications. When the inhibitor recurred he was treated with low-dose cyclophosphamide and prednisolone. This time there was a more delayed response, but the inhibitor disappeared again completely. Two months after cessation of therapy, there was again relapse. Conclusion: Causal relationship between lymphoma and acquired hemophilia remains speculative. At least in some cases of factor VIII inhibitors associated with malignant disease, immunosuppressive therapy may be sufficient to suppress the inhibitor

    Closed orbits and spatial density oscillations in the circular billiard

    Full text link
    We present a case study for the semiclassical calculation of the oscillations in the particle and kinetic-energy densities for the two-dimensional circular billiard. For this system, we can give a complete classification of all closed periodic and non-periodic orbits. We discuss their bifurcations under variation of the starting point r and derive analytical expressions for their properties such as actions, stability determinants, momentum mismatches and Morse indices. We present semiclassical calculations of the spatial density oscillations using a recently developed closed-orbit theory [Roccia J and Brack M 2008 Phys. Rev. Lett. 100 200408], employing standard uniform approximations from perturbation and bifurcation theory, and test the convergence of the closed-orbit sum.Comment: LaTeX, 42 pp., 17 figures (24 *.eps files, 1 *.tex file); final version (v3) to be published in J. Phys.

    A semiclassical analysis of the Efimov energy spectrum in the unitary limit

    Full text link
    We demonstrate that the (s-wave) geometric spectrum of the Efimov energy levels in the unitary limit is generated by the radial motion of a primitive periodic orbit (and its harmonics) of the corresponding classical system. The action of the primitive orbit depends logarithmically on the energy. It is shown to be consistent with an inverse-squared radial potential with a lower cut-off radius. The lowest-order WKB quantization, including the Langer correction, is shown to reproduce the geometric scaling of the energy spectrum. The (WKB) mean-squared radii of the Efimov states scale geometrically like the inverse of their energies. The WKB wavefunctions, regularized near the classical turning point by Langer's generalized connection formula, are practically indistinguishable from the exact wave functions even for the lowest (n=0n=0) state, apart from a tiny shift of its zeros that remains constant for large nn.Comment: LaTeX (revtex 4), 18pp., 4 Figs., already published in Phys. Rev. A but here a note with a new referece is added on p. 1

    Enhancement of the critical temperature in iron-pnictide superconductors by finite size effects

    Full text link
    Recent experiments have shown that, in agreement with previous theoretical predictions, superconductivity in metallic nanostructures can be enhanced with respect to the bulk limit. Motivated by these results we study finite size effects (FSE) in an iron-pnictide superconductor. For realistic values of the bulk critical temperature Tc ~ 20-50K, we find that, in the nanoscale region L ~ 10 nm, Tc(L) has a complicated oscillating pattern as a function of the system size L. A substantial enhancement of Tc with respect to the bulk limit is observed for different boundary conditions, geometries and two microscopic models of superconductivity. Thermal fluctuations, which break long range order, are still small in this region. Finally we show that the differential conductance, an experimental observable, is also very sensitive to FSE.Comment: 4 pages, 3 figure

    Periodic-Orbit Bifurcations and Superdeformed Shell Structure

    Full text link
    We have derived a semiclassical trace formula for the level density of the three-dimensional spheroidal cavity. To overcome the divergences occurring at bifurcations and in the spherical limit, the trace integrals over the action-angle variables were performed using an improved stationary phase method. The resulting semiclassical level density oscillations and shell-correction energies are in good agreement with quantum-mechanical results. We find that the bifurcations of some dominant short periodic orbits lead to an enhancement of the shell structure for "superdeformed" shapes related to those known from atomic nuclei.Comment: 4 pages including 3 figure
    • 

    corecore