19 research outputs found

    Securitas libertatis

    Get PDF

    Neurological Soft Signs Are Associated With Altered White Matter in Patients With Schizophrenia.

    Get PDF
    Neurological soft signs (NSS) are related to grey matter and functional brain abnormalities in schizophrenia. Studies in healthy subjects suggest, that NSS are also linked to white matter. However, the association between NSS and white matter abnormalities in schizophrenia remains to be elucidated. The present study investigated, if NSS are related to white matter alterations in patients with schizophrenia. The total sample included 42 healthy controls and 41 patients with schizophrenia. We used the Neurological Evaluation Scale (NES), and we acquired diffusion weighted magnetic resonance imaging to assess white matter on a voxel-wise between subject statistic. In patients with schizophrenia, linear associations between NES with fractional anisotropy (FA), radial, axial, and mean diffusivity were analyzed with tract-based spatial statistics while controlling for age, medication dose, the severity of the disease, and motion. The main pattern of results in patients showed a positive association of NES with all diffusion measures except FA in important motor pathways: the corticospinal tract, internal capsule, superior longitudinal fascicle, thalamocortical radiations and corpus callosum. In addition, exploratory tractography analysis revealed an association of the right aslant with NES in patients. These results suggest that specific white matter alterations, that is, increased diffusivity might contribute to NSS in patients with schizophrenia

    Increased structural connectivity of the medial forebrain bundle in schizophrenia spectrum disorders is associated with delusions of paranoid threat and grandiosity.

    Get PDF
    In many cases delusions in schizophrenia spectrum disorders (SSD) are driven by strong emotions such as feelings of paranoia or grandiosity. We refer to these extreme emotional experiences as psychotic affectivity. We hypothesized that increased structural connectivity of the supero-lateral medial forebrain bundle (slMFB), a major tract of the reward system, is associated with delusional psychotic affectivity. Forty-six patients with SSD and 44 healthy controls (HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. The slMFB and a comparison tract (corticospinal tract) were reconstructed using diffusion tensor imaging (DTI)-based tractography. Fractional anisotropy (FA) was sampled across the tracts. We used a mixed-model analyses of variance controlling for age and gender to compare FA of bilateral slMFB between SSD-patients and HC. Correlations of FA of bilateral slMFB and the PANSS-positive item delusions were calculated. In addition, FA was compared between three clinically homogeneous SSD-subgroups in terms of psychotic affectivity (severe, mild and no PA, sPA, mPA, nPA) and HC. FA of the slMFB did not differ between all SSD-patients and HC. In SSD-patients there was a positive correlation between delusions and FA in bilateral slMFB. Likewise, SSD-subgroups of psychotic affectivity and HC differed significantly in FA of the slMFB. Results were driven by higher FA in the right slMFB in sPA as compared to nPA and to HC. There was no significant effect for the comparison tract. In conclusion, increased structural connectivity of the slMFB may underlie delusional experiences of paranoia and grandiosity in SSD

    White matter pathway organization of the reward system is related to positive and negative symptoms in schizophrenia

    No full text
    The reward systemin schizophrenia has been linked to the emergence of delusions on the one hand and to negative symptoms such as affective flattening on the other hand. Previous Diffusion Tensor Imaging (DTI) studies reported white matter microstructure alterations of regions related to the reward system. The present study aimed at extending these findings by specifically investigating connection pathways of the reward system in schizophrenia. Therefore, 24 patients with schizophrenia and 22 healthy controls matched for age and gender underwent DTI-scans. Using a probabilistic fiber tracking approachwe bilaterally extracted pathways connecting the ventral tegmental area (VTA) with the nucleus accumbens (NAcc), themedial and lateral orbitofrontal cortices (mOFC, lOFC), the dorsolateral prefrontal cortex (dlPFC) and the amygdala; as well as pathways connecting NAcc with mOFC, lOFC, dlPFC and amygdala resulting in a total of 18 connections. Probability indices forming part of a bundle of interest (PIBI) were compared between groups using independent t-tests. In 6 connection pathways PIBI-valueswere increased in schizophrenia. In 3 of these pathways the spatial extension of connection pathways was decreased. In schizophrenia patients, there was a negative correlation of PIBI-values and PANSS negative scores in the left VTA–amygdala and in the left NAcc–mOFC connection. A sum score of delusions and hallucinations correlated positively with PIBI-values of the left amygdala–NAcc connection. Structural organization of specific segments ofwhite matter pathways of the reward systemin schizophrenia may contribute to the emergence of delusions and negative symptoms in schizophrenia

    Supplementary motor area (SMA) volume is associated with psychotic aberrant motor behaviour of patients with schizophrenia

    No full text
    We aimed to investigate whether aberrant motor behavior in schizophrenia was associated with structural alterations in the motor system. Whole brain voxel based morphometry of patients with different severity of motor symptoms identified altered gray matter volume in the supplementary motor area (SMA), a key region of the motor system

    Ventral striatum gray matter density reduction in patients with schizophrenia and psychotic emotional dysregulation

    Get PDF
    INTRODUCTION: Substantial heterogeneity remains across studies investigating changes in gray matter in schizophrenia. Differences in methodology, heterogeneous symptom patterns and symptom trajectories may contribute to inconsistent findings. To address this problem, we recently proposed to group patients by symptom dimensions, which map on the language, the limbic and the motor systems. The aim of the present study was to investigate whether patients with prevalent symptoms of emotional dysregulation would show structural neuronal abnormalities in the limbic system. METHOD: 43 right-handed medicated patients with schizophrenia were assessed with the Bern Psychopathology Scale (BPS). The patients and a control group of 34 healthy individuals underwent structural imaging at a 3T MRI scanner. Whole brain voxel-based morphometry (VBM) was compared between patient subgroups with different severity of emotional dysregulation. Group comparisons (comparison between patients with severe emotional dysregulation, patients with mild emotional dysregulation, patients with no emotional dysregulation and healthy controls) were performed using a one way ANOVA and ANCOVA respectively. RESULTS: Patients with severe emotional dysregulation had significantly decreased gray matter density in a large cluster including the right ventral striatum and the head of the caudate compared to patients without emotional dysregulation. Comparing patients with severe emotional dysregulation and healthy controls, several clusters of significant decreased GM density were detected in patients, including the right ventral striatum, head of the caudate, left hippocampus, bilateral thalamus, dorsolateral prefrontal and orbitofrontal cortex. The significant effect in the ventral striatum was lost when patients with and without emotional dysregulation were pooled and compared with controls. DISCUSSION: Decreased gray matter density in a large cluster including the right ventral striatum was associated with severe symptoms of emotional dysregulation in patients with schizophrenia. The ventral striatum is an important part of the limbic system, and was indicated to be involved in the generation of incentive salience and psychotic symptoms. Only patients with severe emotional dysregulation had decreased gray matter in several brain structures associated with emotion and reward processing compared to healthy controls. The results support the hypothesis that grouping patients according to specific clinical symptoms matched to the limbic system allows identifying patient subgroups with structural abnormalities in the limbic network
    corecore