548 research outputs found

    Tomographic RF Spectroscopy of a Trapped Fermi Gas at Unitarity

    Full text link
    We present spatially resolved radio-frequency spectroscopy of a trapped Fermi gas with resonant interactions and observe a spectral gap at low temperatures. The spatial distribution of the spectral response of the trapped gas is obtained using in situ phase-contrast imaging and 3D image reconstruction. At the lowest temperature, the homogeneous rf spectrum shows an asymmetric excitation line shape with a peak at 0.48(4)ϵF\epsilon_F with respect to the free atomic line, where ϵF\epsilon_F is the local Fermi energy

    Schwarzschild horizon and the gravitational redshift formula

    Get PDF
    The gravitational redshift formula is usually derived in the geometric optics approximation. In this note we consider an exact formulation of the problem in the Schwarzschild space-time, with the intention to clarify under what conditions this redshift law is valid. It is shown that in the case of shocks the radial component of the Poynting vector can scale according to the redshift formula, under a suitable condition. If that condition is not satisfied, then the effect of the backscattering can lead to significant modifications. The obtained results imply that the energy flux of the short wavelength radiation obeys the standard gravitational redshift formula while the energy flux of long waves can scale differently, with redshifts being dependent on the frequency.Comment: Revtex, 5 p. Rewritten Sec. II, minor changes in Secs III - VII. To appear in the Classical and Quantum Gravit

    Enriching leukapheresis improves T cell activation and transduction efficiency during CAR T processing

    Get PDF
    The majority of CD19-directed CAR T cell products are manufactured using an autologous process. Although using a patient's leukapheresis reduces the risks of rejection, it introduces variability in starting material composition and the presence of cell populations that might negatively affect production of chimeric antigen receptor (CAR) T cells, such as myeloid cells. In this work, the effect of monocytes (CD14) on the level of activation, growth, and transduction efficiency was monitored across well plate and culture bag platforms using healthy donor leukapheresis. Removal of monocytes from leukapheresis improved the level of activation 2-fold, achieving the same level of activation as when initiating the process with a purified T cell starting material. Two activation reagents were tested in well plate cultures, revealing differing sensitivities to starting material composition. Monocyte depletion in culture bag systems had a significant effect on transduction efficiency, improving consistency and increasing the level of CAR expression by up to 64% compared to unsorted leukapheresis. Cytotoxicity assays revealed that CAR T cell products produced from donor material depleted of monocytes and isolated T cells consistently outperformed those made from unsorted leukapheresis. Analysis of memory phenotypes and gene expression indicated that CAR T cells produced using depleted starting material displayed a more rested and naive state. The success of CAR T cell manufacturing and final product function is influenced by the composition of the donor starting material. In this work, we show that upstream depletion of specific cell populations can enhance processing outcomes such as activation, transduction, and phenotype of the therapeutic product

    Observation of Phase Separation in a Strongly-Interacting Imbalanced Fermi Gas

    Full text link
    We have observed phase separation between the superfluid and the normal component in a strongly interacting Fermi gas with imbalanced spin populations. The in situ distribution of the density difference between two trapped spin components is obtained using phase-contrast imaging and 3D image reconstruction. A shell structure is clearly identified where the superfluid region of equal densities is surrounded by a normal gas of unequal densities. The phase transition induces a dramatic change in the density profiles as excess fermions are expelled from the superfluid.Comment: 5 pages, 7 figure

    Hartley transform and the use of the Whitened Hartley spectrum as a tool for phase spectral processing

    Get PDF
    The Hartley transform is a mathematical transformation which is closely related to the better known Fourier transform. The properties that differentiate the Hartley Transform from its Fourier counterpart are that the forward and the inverse transforms are identical and also that the Hartley transform of a real signal is a real function of frequency. The Whitened Hartley spectrum, which stems from the Hartley transform, is a bounded function that encapsulates the phase content of a signal. The Whitened Hartley spectrum, unlike the Fourier phase spectrum, is a function that does not suffer from discontinuities or wrapping ambiguities. An overview on how the Whitened Hartley spectrum encapsulates the phase content of a signal more efficiently compared with its Fourier counterpart as well as the reason that phase unwrapping is not necessary for the Whitened Hartley spectrum, are provided in this study. Moreover, in this study, the product–convolution relationship, the time-shift property and the power spectral density function of the Hartley transform are presented. Finally, a short-time analysis of the Whitened Hartley spectrum as well as the considerations related to the estimation of the phase spectral content of a signal via the Hartley transform, are elaborated

    Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization

    Full text link
    A versatile method is described for the practical computation of the discrete Fourier transforms (DFT) of a continuous function g(t)g(t) given by its values gjg_{j} at the points of a uniform grid FNF_{N} generated by conjugacy classes of elements of finite adjoint order NN in the fundamental region FF of compact semisimple Lie groups. The present implementation of the method is for the groups SU(2), when FF is reduced to a one-dimensional segment, and for SU(2)×...×SU(2)SU(2)\times ... \times SU(2) in multidimensional cases. This simplest case turns out to result in a transform known as discrete cosine transform (DCT), which is often considered to be simply a specific type of the standard DFT. Here we show that the DCT is very different from the standard DFT when the properties of the continuous extensions of these two discrete transforms from the discrete grid points tj;j=0,1,...Nt_j; j=0,1, ... N to all points tFt \in F are considered. (A) Unlike the continuous extension of the DFT, the continuous extension of (the inverse) DCT, called CEDCT, closely approximates g(t)g(t) between the grid points tjt_j. (B) For increasing NN, the derivative of CEDCT converges to the derivative of g(t)g(t). And (C), for CEDCT the principle of locality is valid. Finally, we use the continuous extension of 2-dimensional DCT to illustrate its potential for interpolation, as well as for the data compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's Repor
    corecore