7 research outputs found

    Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production

    Get PDF
    Angiogenesis, the formation of new blood vessels by endothelial cells (ECs), is an adaptive response to oxygen/nutrient deprivation orchestrated by vascular endothelial growth factor (VEGF) upon ischemia or exercise. Hypoxia is the best-understood trigger of VEGF expression via the transcription factor HIF1 alpha. Nutrient deprivation is inseparable from hypoxia during ischemia, yet its role in angiogenesis is poorly characterized. Here, we identified sulfur amino acid restriction as a proangiogenic trigger, promoting increased VEGF expression, migration and sprouting in ECs in vitro, and increased capillary density in mouse skeletal muscle in vivo via the GCN2/ATF4 amino acid starvation response pathway independent of hypoxia or HIF1 alpha. We also identified a requirement for cystathionine-gamma-lyase in VEGF-dependent angiogenesis via increased hydrogen sulfide (H2S) production. H2S mediated its proangiogenic effects in part by inhibiting mitochondrial electron transport and oxidative phosphorylation, resulting in increased glucose uptake and glycolytic ATP production.11Ysciescopu

    Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion

    Get PDF
    Prior studies have identified recurrent oncogenic mutations in colorectal adenocarcinoma1 and have surveyed exons of protein-coding genes for mutations in 11 affected individuals2,3. Here we report whole-genome sequencing from nine individuals with colorectal cancer, including primary colorectal tumors and matched adjacent non-tumor tissues, at an average of 30.7× and 31.9× coverage, respectively. We identify an average of 75 somatic rearrangements per tumor, including complex networks of translocations between pairs of chromosomes. Eleven rearrangements encode predicted in-frame fusion proteins, including a fusion of VTI1A and TCF7L2 found in 3 out of 97 colorectal cancers. Although TCF7L2 encodes TCF4, which cooperates with β-catenin4 in colorectal carcinogenesis5,6, the fusion lacks the TCF4 β-catenin–binding domain. We found a colorectal carcinoma cell line harboring the fusion gene to be dependent on VTI1A-TCF7L2 for anchorage-independent growth using RNA interference-mediated knockdown. This study shows previously unidentified levels of genomic rearrangements in colorectal carcinoma that can lead to essential gene fusions and other oncogenic events

    Alcohol and aging: From epidemiology to mechanism

    No full text
    Alcohol is one of the most widely encountered drugs in the world and is credited with a wealth of health interactions. Light to moderate regular consumption (14–28 g daily) can promote heart health, protect against Type II diabetes, and likely extend overall lifespan. However, higher consumption rates lead to the detrimental effects more widely associated with ethanol consumption, including decreased motor control, cardiotoxicity, insulin resistance, and liver disease. Despite high consumption rates in the elderly population, there has been little focus on alcohol's multifaceted effects in the context of aging. Ethanol interacts with numerous genetic targets that are already associated with aging (such as mitigation of the mechanistic target of rapamycin and activation of FOXO3A), and its dose-dependent lifespan extension depends on still poorly understood connections to these pathways. This review focuses on ethanol's relationship to aging and lifespan in multiple animal models, and it demonstrates how understanding the complicated role of this ubiquitous chemical could be vital in order to apply our knowledge of mechanisms mediating the aging process to the human population. Keywords: Alcohol, Ethanol, Lifespan, Healthspan, Aging, Hormesi

    Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction

    Get PDF
    SummaryMitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD+-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition or by supplementation with NAD+ precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a nuclear-mitochondrial crosstalk that is critical for the maintenance of mitochondrial health

    Splicing of the Mycobacteriophage Bethlehem DnaB Intein: IDENTIFICATION OF A NEW MECHANISTIC CLASS OF INTEINS THAT CONTAIN AN OBLIGATE BLOCK F NUCLEOPHILE*♦

    No full text
    Inteins are single turnover enzymes that splice out of protein precursors during maturation of the host protein (extein). The Cys or Ser at the N terminus of most inteins initiates a four-step protein splicing reaction by forming a (thio)ester bond at the N-terminal splice junction. Several recently identified inteins cannot perform this acyl rearrangement because they do not begin with Cys, Thr, or Ser. This study analyzes one of these, the mycobacteriophage Bethlehem DnaB intein, which we describe here as the prototype for a new class of inteins based on sequence comparisons, reactivity, and mechanism. These Class 3 inteins are characterized by a non-nucleophilic N-terminal residue that co-varies with a non-contiguous Trp, Cys, Thr triplet (WCT) and a Thr or Ser as the first C-extein residue. Several mechanistic differences were observed when compared with standard inteins or previously studied atypical KlbA Ala1 inteins: (a) cleavage at the N-terminal splice junction in the absence of all standard N- and C-terminal splice junction nucleophiles, (b) activation of the N-terminal splice junction by a variant Block B motif that includes the WCT triplet Trp, (c) decay of the branched intermediate by thiols or Cys despite an ester linkage at the C-extein branch point, and (d) an absolute requirement for the WCT triplet Block F Cys. Based on biochemical data and confirmed by molecular modeling, we propose roles for these newly identified conserved residues, a novel protein splicing mechanism that includes a second branched intermediate, and an intein classification with three mechanistic categories

    Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion

    Get PDF
    Prior studies have identified recurrent oncogenic mutations in colorectal adenocarcinoma and have surveyed exons of protein-coding genes for mutations in 11 affected individuals. Here we report whole-genome sequencing from nine individuals with colorectal cancer, including primary colorectal tumors and matched adjacent non-tumor tissues, at an average of 30.7× and 31.9× coverage, respectively. We identify an average of 75 somatic rearrangements per tumor, including complex networks of translocations between pairs of chromosomes. Eleven rearrangements encode predicted in-frame fusion proteins, including a fusion of VTI1A and TCF7L2 found in 3 out of 97 colorectal cancers. Although TCF7L2 encodes TCF4, which cooperates with β-catenin in colorectal carcinogenesis, the fusion lacks the TCF4 β-catenin–binding domain. We found a colorectal carcinoma cell line harboring the fusion gene to be dependent on VTI1A-TCF7L2 for anchorage-independent growth using RNA interference-mediated knockdown. This study shows previously unidentified levels of genomic rearrangements in colorectal carcinoma that can lead to essential gene fusions and other oncogenic events
    corecore