17 research outputs found

    GM1 ganglioside in Parkinson\u27s disease: Pilot study of effects on dopamine transporter binding.

    Get PDF
    OBJECTIVE: GM1 ganglioside has been suggested as a treatment for Parkinson\u27s disease (PD), potentially having symptomatic and disease modifying effects. The current pilot imaging study was performed to examine effects of GM1 on dopamine transporter binding, as a surrogate measure of disease progression, studied longitudinally. METHODS: Positron emission tomography (PET) imaging data were obtained from a subset of subjects enrolled in a delayed start clinical trial of GM1 in PD [1]: 15 Early-start (ES) subjects, 14 Delayed-start (DS) subjects, and 11 Comparison (standard-of-care) subjects. Treatment subjects were studied over a 2.5 year period while Comparison subjects were studied over 2 years. Dynamic PET scans were performed over 90 min following injection of [(11)C]methylphenidate. Regional values of binding potential (BPND) were analyzed for several striatal volumes of interest. RESULTS: Clinical results for this subset of subjects were similar to those previously reported for the larger study group. ES subjects showed early symptomatic improvement and slow symptom progression over the study period. DS and Comparison subjects were initially on the same symptom progression trajectory but diverged once DS subjects received GM1 treatment. Imaging results showed significant slowing of BPND loss in several striatal regions in GM1-treated subjects and in some cases, an increased BPND in some striatal regions was detected after GM1 use. INTERPRETATION: Results of this pilot imaging study provide additional data to suggest a potential disease modifying effect of GM1 on PD. These results need to be confirmed in a larger number of subjects

    Reduced expression of cerebral metabotropic glutamate receptor subtype 5 in men with fragile X syndrome

    Get PDF
    Glutamatergic receptor expression is mostly unknown in adults with fragile X syndrome (FXS). Favorable behavioral effects of negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu

    Tic Reduction Following Heat-Induced Dehydration in Gilles de la Tourette Syndrome (TS)

    No full text
    A 24-year-old man with of Gilles de la Tourette (TS) syndrome experienced a marked remission of 2 years after heat-induced dehydration. Further investigation of the effects of heat and dehydration on TS may be useful

    Milkshake Acutely Stimulates Dopamine Release in Ventral and Dorsal Striatum in Healthy-Weight Individuals and Patients with Severe Obesity Undergoing Bariatric Surgery: A Pilot Study

    No full text
    The overconsumption of palatable energy-dense foods drives obesity, but few human studies have investigated dopamine (DA) release in response to the consumption of a palatable meal, a putative mediator of excess intake in obesity. We imaged [11C]raclopride in the brain with positron emission tomography (PET) to assess striatal dopamine (DA) receptor binding pre- and post-consumption of a highly palatable milkshake (250 mL, 420 kcal) in 11 females, 6 of whom had severe obesity, and 5 of whom had healthy-weight. Those with severe obesity underwent assessments pre- and 3 months post-vertical sleeve gastrectomy (VSG). Our results demonstrated decreased post- vs. pre-meal DA receptor binding in the ventral striatum (p = 0.032), posterior putamen (p = 0.012), and anterior caudate (p = 0.018), consistent with meal-stimulated DA release. Analysis of each group separately suggested that results in the caudate and putamen were disproportionately driven by meal-associated changes in the healthy-weight group. Baseline (pre-meal) DA receptor binding was lower in severe obesity than in the healthy-weight group. Baseline DA receptor binding and DA release did not change from pre- to post-surgery. The results of this small pilot study suggest that milkshake acutely stimulates DA release in the ventral and dorsal striatum. This phenomenon likely contributes to the overconsumption of highly palatable foods in the modern environment

    Objectively measured sleep and β-amyloid burden in older adults: A pilot study

    No full text
    Background/aims: Although disturbed sleep is associated with cognitive deficits, the association between sleep disturbance and Alzheimer’s disease pathology is unclear. In this pilot study, we examined the extent to which sleep duration, sleep quality, and sleep-disordered breathing are associated with β-amyloid (Aβ) deposition in the brains of living humans. Methods: We studied 13 older adults (8 with normal cognition and 5 with mild cognitive impairment). Participants completed neuropsychological testing, polysomnography, and Aβ imaging with [ 11 C]-Pittsburgh compound B. Results: Among participants with mild cognitive impairment, higher apnea–hypopnea index and oxygen desaturation index were associated with greater Aβ deposition, globally and regionally in the precuneus. There were no significant associations between sleep-disordered breathing and Aβ deposition among cognitively normal participants. There were no significant associations between sleep duration or sleep fragmentation and Aβ deposition. Conclusion: These preliminary results suggest that among older adults with mild cognitive impairment, greater sleep-disordered breathing severity is associated with greater Aβ deposition

    VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease

    No full text
    We used positron emission tomography (PET) to measure the earliest change in dopaminergic synapses and glial cell markers in a chronic, low-dose MPTP non-human primate model of Parkinson’s disease (PD). In vivo levels of dopamine transporters (DAT), vesicular monoamine transporter-type 2 (VMAT2), amphetamine-induced dopamine release (AMPH-DAR), D2-dopamine receptors (D2R) and translocator protein 18 kDa (TSPO) were measured longitudinally in the striatum of MPTP-treated animals. We report an early (2 months) decrease (46%) of striatal VMAT2 in asymptomatic MPTP animals that preceded changes in DAT, D2R, and AMPH-DAR and was associated with increased TSPO levels indicative of a glial response. Subsequent PET studies showed progressive loss of all pre-synaptic dopamine markers in the striatum with expression of parkinsonism. However, glial cell activation did not track disease progression. These findings indicate that decreased VMAT2 is a key pathogenic event that precedes nigrostriatal dopamine neuron degeneration. The loss of VMAT2 may result from an association with α-synuclein aggregation induced by oxidative stress. Disruption of dopamine sequestration by reducing VMAT2 is an early pathogenic event in the dopamine neuron degeneration that occurs in the MPTP non-human primate model of PD. Genetic or environmental factors that decrease VMAT2 function may be important determinants of PD

    VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease

    No full text
    We used positron emission tomography (PET) to measure the earliest change in dopaminergic synapses and glial cell markers in a chronic, low-dose MPTP non-human primate model of Parkinson’s disease (PD). In vivo levels of dopamine transporters (DAT), vesicular monoamine transporter-type 2 (VMAT2), amphetamine-induced dopamine release (AMPH-DAR), D2-dopamine receptors (D2R) and translocator protein 18 kDa (TSPO) were measured longitudinally in the striatum of MPTP-treated animals. We report an early (2 months) decrease (46%) of striatal VMAT2 in asymptomatic MPTP animals that preceded changes in DAT, D2R, and AMPH-DAR and was associated with increased TSPO levels indicative of a glial response. Subsequent PET studies showed progressive loss of all pre-synaptic dopamine markers in the striatum with expression of parkinsonism. However, glial cell activation did not track disease progression. These findings indicate that decreased VMAT2 is a key pathogenic event that precedes nigrostriatal dopamine neuron degeneration. The loss of VMAT2 may result from an association with α-synuclein aggregation induced by oxidative stress. Disruption of dopamine sequestration by reducing VMAT2 is an early pathogenic event in the dopamine neuron degeneration that occurs in the MPTP non-human primate model of PD. Genetic or environmental factors that decrease VMAT2 function may be important determinants of PD
    corecore