34 research outputs found

    Cervical collagen and biomechanical strength in non-pregnant women with a history of cervical insufficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that cervical insufficiency (CI) is characterized by a "muscular cervix" with low collagen and high smooth muscle concentrations also in the non-pregnant state. Therefore, the aim of this study was to investigate the biomechanical properties, collagen concentration, smooth muscle cell density, and collagen fiber orientation in cervical biopsies from non-pregnant women with a history of CI.</p> <p>Methods</p> <p>Cervical punch biopsies (2 × 15 mm) were obtained from 57 normal non-pregnant women and 22 women with a history of CI. Biomechanical tensile testing was performed, and collagen content was determined by hydroxyproline quantification. Histomorphometry was used to determine the volume densities of extracellular matrix and smooth muscle cells from the distal to the proximal part of each sample. Smooth muscle cells were identified using immunohistoche-mistry. Finally, collagen fiber orientation was investigated. Data are given as mean +/- SD.</p> <p>Results</p> <p>Collagen concentration was lower in the CI group (58.6 +/- 8.8%) compared with the control group (62.2 +/- 6.6%) (p = 0.033). However, when data were adjusted for age and parity, no difference in collagen concentration was found between the two groups. Maximum load of the specimens did not differ between the groups (p = 0.78). The tensile strength of cervical collagen, i.e. maximum load normalized per unit collagen (mg of collagen per mm of specimen length), was increased in the CI group compared with controls (p = 0.033). No differences in the volume density of extracellular matrix or smooth muscle cells were found between the two groups. Fibers not oriented in the plane of sectioning were increased in CI patients compared with controls.</p> <p>Conclusions</p> <p>Cervical insufficiency does not appear to be associated with a constitutionally low collagen concentration or collagen of inferior mechanical quality. Furthermore, the hypothesis that a "muscular cervix" with an abundance of smooth muscle cells contributes to the development of cervical insufficiency is not supported by the present study.</p

    Effect of voluntary exercise on number and volume of cardiomyocytes and their mitochondria in the mouse left ventricle

    Get PDF
    Voluntary exercise (VE) has a beneficial influence on the heart and mean lifespan. The present study evaluates structural adaptations of cardiomyocytes and their mitochondria due to VE by new, unbiased stereological methods. Female, 7-9-week-old mice were randomly assigned to a control (CG, n=7) or VE group (EG, n=7). EG animals were housed in cages with free access to a running wheel and had a mean running distance of 6.7 (1.8)km per day. After 4weeks, the hearts of all mice were processed for light and electron microscopy. We estimated the number and volume of cardiomyocytes by the disector method and the number and volume of mitochondria by estimation of the Euler number. In comparison to CG, VE did not have an effect on the myocardial volume of the left ventricle (CG: 93 (10), EG: 103 (17) (mm3)), the number of cardiomyocytes (CG: 2.81 (0.27), EG: 2.82 (0.43) (×106)) and their number-weighted mean volume. However, the composition of the cardiomyocytes changed due to VE. The total volume of mitochondria (CG: 21.8 (4.9), EG: 32.2 (4.3) (mm3), P<0.01) and the total number (CG: 3.76 (0.44), EG: 7.02 (1.13) (×1010), P<0.001) were significantly higher in EG than in CG. The mean number-weighted mitochondrial volume was smaller in EG than in CG (P<0.05). In summary, VE does not alter ventricular volume nor cardiomyocyte volume or number but the oxidative capacity of cardiomyocytes by an increased mitochondrial number and total volume in the left ventricle. These structural changes may participate in the beneficial effects of V

    Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    Full text link
    Modeling and remodeling induce significant changes of bone structure and mechanical properties with age. Therefore, it is important to gain knowledge of the processes taking place in bone over time. The rat is a widely used animal model, where much data has been accumulated on age-related changes of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte lacunar properties in rat cortical bone. Femora of 14 to 42-week-old female Wistar rats were investigated using multiple complementary techniques including X-ray micro-computed tomography and biomechanical testing. The body weight, femoral length, aBMD, load to fracture, tissue volume, bone volume, and tissue density were found to increase rapidly with age at 14-30 weeks. At the age of 30-42 weeks, the growth rate appeared to decrease. However, no accompanying changes were found in osteocyte lacunar properties such as lacunar volume, ellipsoidal radii, lacunar stretch, lacunar oblateness, or lacunar orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties of the osteocyte lacunar network are main determinants of the properties of the bone on larger length scales

    Polychromatic neutron phase contrast imaging of weakly absorbing samples enabled by phase retrieval

    Full text link
    We demonstrate the use of a phase retrieval technique for propagation-based phase contrast neutron imaging with a polychromatic beam. This enables imaging samples with low absorption contrast and/or improving the signal-to-noise ratio to facilitate e.g. time resolved measurements. A metal sample, designed to be close to a pure phase object, and a bone sample with canals partially filled with D2O were used for demonstrating the technique. These samples were imaged with a polychromatic neutron beam followed by phase retrieval. For both samples the signal-to-noise ratio were significantly improved and in case of the bone sample, the phase retrieval allowed for separation of bone and D2O, which is important for example for in situ flow experiments. The use of deuteration-contrast avoids the use of chemical contrast enhancement and makes neutron imaging an interesting complementary method to X-ray imaging of bone

    Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During normal pregnancy the cervix has a load bearing function. The cervical tissue consists mainly of an extracellular matrix (ECM) rich in collagen; important for the biomechanical properties. The aim of the present study was to evaluate how the biomechanical strength of samples from the distal cervix is associated with collagen content in relation to age and parity. This study demonstrates a method to investigate cervical tissue from women who still have their uterus in situ.</p> <p>Methods</p> <p>Cervical punch biopsies (2 × 15 mm) were obtained from 57 healthy women (median age: 39 years, range: 29-49 years). Biomechanical tensile testing was performed, and collagen concentration (as % of dry defatted weight (DDW)) and content (mg of collagen per mm of specimen length) was determined. Histomorphometry was used to determine the volume densities of extracellular matrix and smooth muscle cells. Smooth muscle cells were identified by immunohistochemistry. Finally, orientation of collagen fibers was estimated. Data are given as mean +/- SD.</p> <p>Results</p> <p>The mean collagen concentration (62.2 +/- 6.6%) increased with age (0.5% per year, r = 0.45, p = 0.003) and decreased with parity (1.7% per birth, r = -0.45, p = 0.033). Maximum load was positively correlated with collagen content (mg of collagen per mm of specimen length) (r = 0.76, p < 0.001). Normalized maximum stiffness was increased with age (r = 0.32, p = 0.017), whereas no correlation was found with regard to parity. In tissue samples with a length of approximately one cm, volume density of smooth muscle cells increased gradually from 8.9% in the distal part near the epithelium, to 15.5% in the proximal part (p < 0.001).</p> <p>Conclusions</p> <p>The present study shows that cervical collagen concentration increases with age and decreases with parity in non-pregnant women. In addition, collagen stiffness increased with age, whereas no change in collagen tensile strength with respect to age and parity was found. These results show that collagen contributes to cervical tissue tensile strength and age and parity should be considered confounding factors.</p

    STEREOLOGICAL CHALLENGES WHEN WORKING WITH HEART MUSCLE FIBRES

    No full text
    This contribution is based on a series of studies, where stereological methods were applied to hearts from rats treated with growth hormone. A method to estimate the total number of cardiac myocytes is described and, furthermore, length estimates of heart muscle fibres are discussed

    Short-term glucocorticoid excess blunts abaloparatide-induced increase in femoral bone mass and strength in mice

    No full text
    Abstract Glucocorticoids (GCs), such as prednisolone, are widely used to treat inflammatory diseases. Continuously long-term or high dose treatment with GCs is one of the most common causes of secondary osteoporosis and is associated with sarcopenia and increased risk of debilitating osteoporotic fragility fractures. Abaloparatide (ABL) is a potent parathyroid hormone-related peptide analog, which can increase bone mineral density (aBMD), improve trabecular microarchitecture, and increase bone strength. The present study aimed to investigate whether GC excess blunts the osteoanabolic effect of ABL. Sixty 12–13-week-old female RjOrl:SWISS mice were allocated to the following groups: Baseline, Control, ABL, GC, and GC + ABL. ABL was administered as subcutaneous injections (100 μg/kg), while GC was delivered by subcutaneous implantation of a 60-days slow-release prednisolone-pellet (10 mg). The study lasted four weeks. GC induced a substantial reduction in muscle mass, trabecular mineral apposition rate (MAR) and bone formation rate (BFR/BS), and endocortical MAR compared with Control, but did not alter the trabecular microarchitecture or bone strength. In mice not receiving GC, ABL increased aBMD, bone mineral content (BMC), cortical and trabecular microarchitecture, mineralizing surface (MS/BS), MAR, BFR/BS, and bone strength compared with Control. However, when administered concomitantly with GC, the osteoanabolic effect of ABL on BMC, cortical morphology, and cortical bone strength was blunted. In conclusion, at cortical bone sites, the osteoanabolic effect of ABL is generally blunted by short-term GC excess

    The effect of oral dabigatran etexilate on bone density, strength, and microstructure in healthy mice

    No full text
    Thrombin is a key component in the coagulation cascade where it converts factor V, VIII, XI, and fibrinogen. In addition to the abundant production of thrombin in the liver, osteoclasts synthesize and secrete thrombin as well. Osteoblasts express thrombin receptors, and it has been reported that thrombin stimulates the expression of RANKL relatively to OPG, resulting in greater osteoclast activation and bone degradation. Pradaxa (dabigatran etexilate, DE) is a new anticoagulant, which has recently been approved for clinical use. DE is a direct thrombin inhibitor with potential to modulate the RANKL/OPG ratio and thereby limit osteoclast activation and bone degradation. The purpose of the study was to investigate whether DE can increase bone density, bone strength, and bone microstructure in healthy male and female mice and to investigate whether the effect of DE is sex-dependent. Twenty-eight 14-week-old male C57BL/6 mice were stratified by weight into 4 groups: 1. Control 3weeks; 2. DE 3weeks; 3. Control 6weeks; 4. DE 6weeks. An identical study design was applied to twenty-four 14-week-old female C57BL/6 mice. Chow mixed with DE was offered ad libitum, resulting in a dose of 1.70mgDE/g body weight and 1.52mgDE/g body weight, to female and male mice, respectively. The animals were euthanized after 3 or 6weeks. Bone mineral density (aBMD) and bone mineral content (BMC) were evaluated with DEXA, 3D microstructural properties were determined with μCT, bone strength was determined with mechanical testing, and bone formation and resorption was evaluated with bone histomorphometry. In female mice, DE resulted in significant higher tibial aBMD values after 6weeks of intervention. Furthermore, DE significantly increased tibial diaphyseal cortical bone area and tissue area, which was accompanied by significantly increased strength of the tibial shaft. DE had no effect on femoral cortical bone or on femoral and vertebral trabecular 3D microstructure. Finally, bone histomorphometry showed that DE had no effect on MS/BS or Oc.S/BS. In male mice, no bone positive effects of DE were found in any of the parameters investigated. In conclusion, intervention with DE may result in a weak positive site specific effect at tibial cortical bone in female mice, and importantly, no major deleterious effects of DE on bone tissue were seen in either female or male mice despite the relatively high dose of DE used. Keywords: Blood clotting, μCT, Dabigatran etexilate, Bone formatio
    corecore