12 research outputs found

    Calibration of the KIT test setup for the cooling tests of a gyrotron cavity full-size mock-up equipped with mini-channels

    Get PDF
    In high-power fusion gyrotrons, the maximum heat-load on the wall of the interaction section is in the order of 2 kW/cm2, which is the major limiting technological factor for output power and pulse-length of the tube. The ongoing gyrotron development demands a very effective cavity cooling system for optimum gyrotron operation. In this work, the experimental investigation of a mini-channel cavity cooling using a mock-up test set-up is described. The mock-up test set-up will be used to experimentally validate the predictive simulation results and verify the mini-channel cooling performance. It is crucial for validation of the mini-channel cooling properties to determine the amount of the heat load introduced in the cavity wall by an induction heater. In order to estimate that heat load, full 3D electromagnetic simulations have been performed using the CST Studio Suite® software. A suitable calibration factor for the load deposited in the mock-up inner wall is identified after numerical investigation by a 3D thermal model. Calorimetry measurements are performed and the experimental results are compared with the simulation results obtained with a 3D thermal-hydraulic model, using the commercial software STAR-CCM+. When the calibration factor is applied, the experimental calorimetry is well reproduced by the simulations

    The Micro-Pillar Shear-Stress Sensor MPS3 for Turbulent Flow

    Get PDF
    Wall-shear stress results from the relative motion of a fluid over a body surface as a consequence of the no-slip condition of the fluid in the vicinity of the wall. To determine the two-dimensional wall-shear stress distribution is of utter importance in theoretical and applied turbulence research. In this article, characteristics of the Micro-Pillar Shear-Stress Sensor MPS3, which has been shown to offer the potential to measure the two-directional dynamic wall-shear stress distribution in turbulent flows, will be summarized. After a brief general description of the sensor concept, material characteristics, possible sensor-structure related error sources, various sensitivity and distinct sensor performance aspects will be addressed. Especially, pressure-sensitivity related aspects will be discussed. This discussion will serve as ‘design rules’ for possible new fields of applications of the sensor technology

    SoDA: Enabling CDN-ISP Collaboration with Software Defined Anycast

    No full text
    corecore