83 research outputs found

    Antipsychotic drug use in pregnancy: A multinational study from ten countries.

    Get PDF
    AIM: To compare the prevalence and trends of antipsychotic drug use during pregnancy between countries across four continents. METHODS: Individually linked health data in Denmark (2000-2012), Finland (2005-2014), Iceland (2004-2017), Norway (2005-2015), Sweden (2006-2015), Germany (2006-2015), Australia (New South Wales, 2004-2012), Hong Kong (2001-2015), UK (2006-2016), and the US (Medicaid, 2000-2013, and IBM MarketScan, 2012-2015) were used. Using a uniformed approach, we estimated the prevalence of antipsychotic use as the proportion of pregnancies where a woman filled at least one antipsychotic prescription within three months before pregnancy until birth. For the Nordic countries, data were meta-analyzed to investigate maternal characteristics associated with the use of antipsychotics. RESULTS: We included 8,394,343 pregnancies. Typical antipsychotic use was highest in the UK (4.4%) whereas atypical antipsychotic use was highest in the US Medicaid (1.5%). Atypical antipsychotic use increased over time in most populations, reaching 2% in Australia (2012) and US Medicaid (2013). In most countries, prochlorperazine was the most commonly used typical antipsychotic and quetiapine the most commonly used atypical antipsychotic. Use of antipsychotics decreased across the trimesters of pregnancy in all populations except Finland. Antipsychotic use was elevated among smokers and those with parity ≥4 in the Nordic countries. CONCLUSION: Antipsychotic use during pregnancy varied considerably between populations, partly explained by varying use of the typical antipsychotic prochlorperazine, which is often used for nausea and vomiting in early pregnancy. Increasing usage of atypical antipsychotics among pregnant women reflects the pattern that was previously reported for the general population

    Identification of Genes Contributing to the Virulence of Francisella tularensis SCHU S4 in a Mouse Intradermal Infection Model

    Get PDF
    Background: Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings: The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD\u2085\u2080 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably \u394pyrB and \u394recA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD\u2085\u2080 of >10\ub3 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD\u2085\u2080 of 6510\u2077 CFU. Conclusions/Significance: The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.Peer reviewed: YesNRC publication: Ye

    Type III secretion- the various functions of the translocon operon in bacterial pathogenesis

    No full text
    In order to establish colonisation of a human host, pathogenic Yersinia use a type III protein secretion system to directly intoxicate host immune cells. Activation of this system requires target cell contact and is a highly regulated process. Both the intoxication and regulation events depend on the lcrGVHyopBD translocon operon, which is highly conserved in many bacterial pathogens. In this study, the role of individual operon members was analysed and functional domains identified by using the highly homologous pcrGVHpopBD operon of P. aeruginosa as a comparative tool. Yersinia spp. and P. aeruginosa were shown to form translocation pores of a similar size that promoted equally efficient protein delivery. A strong dependency on interactions between native translocator(s) in protein delivery was revealed, suggesting that each pathogen has delicately fine-tuned this process to suit its own infection niche. In particular, the C-terminus of YopD was shown to possess functional specificity for effector delivery in Yersinia that could not be conferred by the comparable region in homologous PopD. Moreover, a role for LcrV and PcrV in substrate recognition during the protein delivery process was excluded. The N-terminus of LcrH was recognized as a unique regulatory domain, mediating formation of LcrH-YscY regulatory complexes in Yersinia, while equivalent complexes with analogous proteins were not formed in P. aeruginosa. These results compliment the idea that a negative regulatory pathway involving LcrH, YopD, LcrQ and YscY is unique to Yersinia. Finally, PcrH was identified as a new member of the translocator class of chaperones, being essential for assembly of a functional PopB/PopD mediated translocon in P. aeruginosa. However, in contrast to the other members of this family, PcrH was dispensable for type III regulation. Moreover, both LcrH and PcrH were shown to possess tetratricopeptide repeats crucial for their chaperone function. One tetratricopeptide repeat mutant in LcrH was even isolated that failed to secrete both YopB and YopD substrates, even though stability was maintained. This demonstrates for the first time that LcrH has a role in substrate secretion in addition to its critical role in promoting substrate stability

    Exploring the Diversity Within the Genus Francisella – An Integrated Pan-Genome and Genome-Mining Approach

    No full text
    Pan-genome analysis is a powerful method to explore genomic heterogeneity and diversity of bacterial species. Here we present a pan-genome analysis of the genus Francisella, comprising a dataset of 63 genomes and encompassing clinical as well as environmental isolates from distinct geographic locations. To determine the evolutionary relationship within the genus, we performed phylogenetic whole-genome studies utilizing the average nucleotide identity, average amino acid identity, core genes and non-recombinant loci markers. Based on the analyses, the phylogenetic trees obtained identified two distinct clades, A and B and a diverse cluster designated C. The sizes of the pan-, core-, cloud-, and shell-genomes of Francisella were estimated and compared to those of two other facultative intracellular pathogens, Legionella and Piscirickettsia. Francisella had the smallest core-genome, 692 genes, compared to 886 and 1,732 genes for Legionella and Piscirickettsia respectively, while the pan-genome of Legionella was more than twice the size of that of the other two genera. Also, the composition of the Francisella Type VI secretion system (T6SS) was analyzed. Distinct differences in the gene content of the T6SS were identified. In silico approaches performed to identify putative substrates of these systems revealed potential effectors targeting the cell wall, inner membrane, cellular nucleic acids as well as proteins, thus constituting attractive targets for site-directed mutagenesis. The comparative analysis performed here provides a comprehensive basis for the assessment of the phylogenomic relationship of members of the genus Francisella and for the identification of putative T6SS virulence traits

    A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control type VI system-mediated secretion

    No full text
    The Gram-negative bacterium Francisella tularensis is the etiological agent of the zoonotic disease tularemia. Its life cycle is characterized by an ability to survive within phagocytic cells through phagosomal escape and replication in the cytosol, ultimately causing inflammasome activation and host cell death. Required for these processes is the Francisella Pathogenicity Island (FPI), which encodes a Type VI secretion system (T6SS) that is active during intracellular infection. In this study, we analyzed the role of the FPI-component IglE, a lipoprotein which we previously have shown to be secreted in a T6SS-dependent manner. We demonstrate that in F. tularensis LVS, IglE is an outer membrane protein. Upon infection of J774 cells, an Delta iglE mutant failed to escape from phagosomes, and subsequently, to multiply and cause cytopathogenicity. Moreover, Delta iglE was unable to activate the inflammasome, to inhibit LPS-stimulated secretion of TNF-alpha, and showed marked attenuation in the mouse model. In F. novicida, IglE was required for in vitro secretion of IglC and VgrG. A mutagenesis-based approach involving frameshift mutations and alanine substitution mutations within the first similar to 38 residues of IglE revealed that drastic changes in the sequence of the extreme N-terminus (residues 2-6) were well tolerated and, intriguingly, caused hyper-secretion of IglE during intracellular infection, while even subtle mutations further downstream lead to impaired protein function. Taken together, this study highlights the importance of IglE in F. tularensis pathogenicity, and the contribution of the N-terminus for all of the above mentioned processes

    The Role of ClpB in Bacterial Stress Responses and Virulence

    Get PDF
    Bacterial survival within a mammalian host is contingent upon sensing environmental perturbations and initiating an appropriate counter-response. To achieve this, sophisticated molecular machineries are used, where bacterial chaperone systems play key roles. The chaperones are a prerequisite for bacterial survival during normal physiological conditions as well as under stressful situations, e.g., infection or inflammation. Specific stress factors include, but are not limited to, high temperature, osmolarity, pH, reactive oxidative species, or bactericidal molecules. ClpB, a member of class 1 AAA+ proteins, is a key chaperone that via its disaggregase activity plays a crucial role for bacterial survival under various forms of stress, in particular heat shock. Recently, it has been reported that ClpB also regulates secretion of bacterial effector molecules related to type VI secretion systems. In this review, the roles of ClpB in stress responses and the mechanisms by which it promotes survival of pathogenic bacteria are discussed
    • …
    corecore