3 research outputs found

    Volatile profile and physical, chemical, and biochemical changes in fresh cut watermelon during storage Perfil volátil e alterações físicas, químicas e bioquímicas na melancia minimamente processada durante o armazenamento

    No full text
    Existing data about the aroma of fresh-cut watermelon and the metabolic changes that occur with minimal processing are scarce. Given the close relationship that exists between aroma, texture, and quality characteristics, it is necessary to investigate the changes in the volatile profile and texture of watermelon, a fruit extensively sold in supermarket chains throughout Brazil. The objective of this work was to analyze the volatile profile using solid phase microextraction (SPME) as well as texture changes in fresh-cut watermelon stored at 5 °C for ten days. Chromatography associated with sensory analysis (sniffing) led us to conclude that 9-carbon (C9) alcohols and aldehydes are the major responsible for the flavor and aroma of minimally processed watermelon stored at 5 ± 1 °C/90 ± 5% RH for ten days, and also that the aroma diminishes in intensity with storage, but it does not affect the final quality of the product. It was noted that the amount of drained liquid, soluble pectin, and weight loss increased during storage concurrently with a reduction in firmness and a structural breakdown of the cells. Pectin methyl esterase activity remained constant and polygalacturonase activity was not detected.<br>Existe pouca informação a respeito do aroma de melancia minimamente processada e das alterações metabólicas que ocorrem com o processamento mínimo. Sabendo-se que há estreita relação entre aroma característico, textura e qualidade torna-se necessário o conhecimento a respeito das alterações do perfil volátil e textura deste produto, que é intensamente comercializado nas redes de supermercados do Brasil. Diante disso, o objetivo deste trabalho foi analisar o perfil volátil utilizando a técnica de microextração em fase sólida (SPME) e as modificações relacionadas à textura de melancia minimamente processada armazenada a 5 °C, por dez dias. A cromatografia associada com análise sensorial ('sniffing') permitiu concluir que os álcoois e aldeídos com nove carbonos (C9) são os principais compostos responsáveis pelo sabor e aroma de melancia minimamente processada armazenada a 5 ± 1 °C/90 ± 5% UR, durante dez dias e que a intensidade desse aroma diminui com o armazenamento, porém, sem comprometer a qualidade final do produto. Observou-se que o teor de líquido drenado, pectina solúvel e perda de massa aumentaram ao longo do armazenamento com concomitante diminuição da firmeza. A atividade de pectinametilesterase permaneceu constante e a de poligalacturonase não foi detectada

    Volatile profile and physical, chemical, and biochemical changes in fresh cut watermelon during storage

    No full text
    Existing data about the aroma of fresh-cut watermelon and the metabolic changes that occur with minimal processing are scarce. Given the close relationship that exists between aroma, texture, and quality characteristics, it is necessary to investigate the changes in the volatile profile and texture of watermelon, a fruit extensively sold in supermarket chains throughout Brazil. The objective of this work was to analyze the volatile profile using solid phase microextraction (SPME) as well as texture changes in fresh-cut watermelon stored at 5 °C for ten days. Chromatography associated with sensory analysis (sniffing) led us to conclude that 9-carbon (C9) alcohols and aldehydes are the major responsible for the flavor and aroma of minimally processed watermelon stored at 5 ± 1 °C/90 ± 5% RH for ten days, and also that the aroma diminishes in intensity with storage, but it does not affect the final quality of the product. It was noted that the amount of drained liquid, soluble pectin, and weight loss increased during storage concurrently with a reduction in firmness and a structural breakdown of the cells. Pectin methyl esterase activity remained constant and polygalacturonase activity was not detected
    corecore