2 research outputs found

    Plastin 3 is upregulated in iPSC-derived motoneurons from asymptomatic SMN1-deleted individuals

    Get PDF
    Spinal muscular atrophy (SMA) is a devastating motoneuron (MN) disorder caused by homozygous loss of SMN1. Rarely, SMN1-deleted individuals are fully asymptomatic despite carrying identical SMN2 copies as their SMA III-affected siblings suggesting protection by genetic modifiers other than SMN2. High plastin 3 (PLS3) expression has previously been found in lymphoblastoid cells but not in fibroblasts of asymptomatic compared to symptomatic siblings. To find out whether PLS3 is also upregulated in MNs of asymptomatic individuals and thus a convincing SMA protective modifier, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of three asymptomatic and three SMA III-affected siblings from two families and compared these to iPSCs from a SMA I patient and control individuals. MNs were differentiated from iPSC-derived small molecule neural precursor cells (smNPCs). All four genotype classes showed similar capacity to differentiate into MNs at day 8. However, SMA I-derived MN survival was significantly decreased while SMA III- and asymptomatic-derived MN survival was moderately reduced compared to controls at day 27. SMN expression levels and concomitant gem numbers broadly matched SMN2 copy number distribution; SMA I presented the lowest levels, whereas SMA III and asymptomatic showed similar levels. In contrast, PLS3 was significantly upregulated in mixed MN cultures from asymptomatic individuals pinpointing a tissue-specific regulation. Evidence for strong PLS3 accumulation in shaft and rim of growth cones in MN cultures from asymptomatic individuals implies an important role in neuromuscular synapse formation and maintenance. These findings provide strong evidence that PLS3 is a genuine SMA protective modifier

    Expression studies in gliomas and glial cells do not support a tumour suppressor role for LGI1

    No full text
    Disruptions of LGI1 in glioblastoma (GBM) cell lines and LGI1 mutations in families with autosomal dominant epilepsy imply a role for LGI1 in glial cells as well as in neurons. Although we and others could not find LGI1 mutations in malignant gliomas, our initial studies appeared to support the idea that LGI1 is poorly expressed or absent in these tumors. Microarray data suggested that LGI1 could be involved in the control of matrix metalloproteinases, and we found that tumors derived from U87 glioblastoma cells overexpressing LGI1 were less aggressive than U87 control tumors. To our surprise, we observed that LGI1 expression after differentiation of murine neural stem cells was robust in neurons but negligible in glial cells, in agreement with immunohistochemistry studies on rodent brain. This observation could suggest that the variable levels of LGI1 expression in gliomas reflect the presence of neurons entrapped within the tumor. To test this hypothesis, we investigated LGI1 expression in parallel with expression of the neuronal marker NEF3 by real-time PCR on 30 malignant gliomas. Results showed a strong, positive correlation between the expression levels of these two genes (P < 0.0001). Thus, our data confirm that LGI1 is involved in cell-matrix interactions but suggest that its expression is not relevant in glial cells, implying that its role as a tumor suppressor in gliomas should be reconsidered
    corecore