9 research outputs found

    Probabilistic Model-Based Safety Analysis

    Full text link
    Model-based safety analysis approaches aim at finding critical failure combinations by analysis of models of the whole system (i.e. software, hardware, failure modes and environment). The advantage of these methods compared to traditional approaches is that the analysis of the whole system gives more precise results. Only few model-based approaches have been applied to answer quantitative questions in safety analysis, often limited to analysis of specific failure propagation models, limited types of failure modes or without system dynamics and behavior, as direct quantitative analysis is uses large amounts of computing resources. New achievements in the domain of (probabilistic) model-checking now allow for overcoming this problem. This paper shows how functional models based on synchronous parallel semantics, which can be used for system design, implementation and qualitative safety analysis, can be directly re-used for (model-based) quantitative safety analysis. Accurate modeling of different types of probabilistic failure occurrence is shown as well as accurate interpretation of the results of the analysis. This allows for reliable and expressive assessment of the safety of a system in early design stages

    EMSO ERIC: A challenging infrastructure to monitor Essential Ocean Variables (EOVs) across European Seas

    Get PDF
    The European Multidisciplinary Seafoor and water Column Observatory (EMSO, www.emso.eu) is a distributed research infrastructure (RI), composed of fxed-point deep-sea observatories and shallow water test sites at strategic environmental locations from the southern entrance of the Arctic Ocean all the way through the North Atlantic through the Mediterranean to the Black Sea. Working as a single powerful system, it is a valuable new tool for researchers and engineers looking for long time series of high-quality and high-resolution data to study and continuously monitor complex processes interactions among the geosphere, biosphere, hydrosphere and atmosphere, as well as to test, validate and demonstrate new marine technologies.Peer Reviewe

    EMSO ERIC: A challenging infrastructure to monitor Essential Ocean Variables (EOVs) across European Seas

    Get PDF
    Special issue 9th MARTECH: International Workshop on Marine Technology: 16-18 June 2021, Vigo, Spain.-- 2 pages, 1 figureThe European Multidisciplinary Seafoor and water Column Observatory (EMSO, www.emso.eu) is a distributed research infrastructure (RI), composed of fxed-point deep-sea observatories and shallow water test sites at strategic environmental locations from the southern entrance of the Arctic Ocean all the way through the North Atlantic through the Mediterranean to the Black Sea. Working as a single powerful system, it is a valuable new tool for researchers and engineers looking for long time series of high-quality and high-resolution data to study and continuously monitor complex processes interactions among the geosphere, biosphere, hydrosphere and atmosphere, as well as to test, validate and demonstrate new marine technologiesPeer reviewe

    Tracking deformation processes at the Legnica Glogow Copper District (Poland) by Satellite InSAR. 2.: Żelazny most tailings dam

    No full text
    The failures of tailings dams have a major negative impact on the economy, surrounding properties, and people’s lives, and therefore the monitoring of these facilities is crucial to mitigate the risk of failure, but this can be challenging due to their size and inaccessibility. In this work, the deformation processes at Zelazny Most tailings dam (Poland) were analyzed using satellite Ad- ˙ vanced Differential SAR Interferometry (A-DInSAR) from October 2014 to April 2019, showing that the dam is affected by both settlements (with a maximum rate of 30 mm/yr), and horizontal sliding in radial direction with respect to the ponds. The load of the tailings is pushing the dam forward along the glacio-tectonic shear planes located at depth, in the Pliocene clays, causing horizontal displacements at a rate up to 30 mm/yr, which could lead to a passive failure of the dam. The measured displacements have been compared with the ones observed by in situ data from the 90s to 2013, available in the literature. The outcomes indicate that intense localized deformations occur in the eastern and northern sectors of the dam, while the western sector is deforming evenly. Moreover, although the horizontal deformation had a slowdown from 2010 until 2013, it continued in 2014 to 2019 with recovered intensity. The upper and the recent embankments are affected by major settlements, possibly due to a lower consolidation degree of the most recent tailings and a larger thickness of compressible materials

    Tracking deformation processes at the Legnica Glogow Copper District (Poland) by Satellite InSAR—I. Room and Pillar Mine District

    No full text
    Mining exploitation leads to slow or rapid ground subsidence resulting from deformation until the collapse of underground post-mining voids following excavation activities. Satellite SAR interferometry capabilities for the evaluation of ground movements allows the monitoring of intensive surface mine subsidence and can provide new knowledge about the risks in the mining industry. This work integrates both conventional and advanced Differential SAR Interferometry (DInSAR) to study the ground subsidence in the Legnica Glogow Copper District (LGCD, Poland) by processing about 400 Sentinel-1 images from October 2014 to April 2019. Even without field data and information on past and ongoing excavation activities, the DInSAR approach allowed us to identify 30 troughs of subsidence, ranging from 500 m to 2.5 km in diameter, which in some cases, took place several times during the analyzed time span. The cumulative subsidence in 4 years and 7 months exceeds 70 cm in several zones of the LGCD. The sub-centimetric precision achieved by advanced analysis (A-DInSAR), allowed us to monitor the real extent of the mining influence area on the surface, with deformation velocities of up to 50 mm/year. The ground deformation detected at LGCD can be due to both mining-induced tremors and roof subsidence above the underground excavation rooms. As deformations do not occur concurrently with tremors, this can be related to excavation activities or to degradation of abandoned mines

    Discovery of Versilian deposits suitable for beach nourishment on the continental shelf of Western Liguria.

    No full text
    In this paper we present the results of a study conducted in collaboration with the Ligurian Region, in the framework of the E.U. Beachmed-e Interreg IIIc Project, to distinguish relic coastal deposits on the continental shelf, suitable for beach nourishment. These deposits are related to transgressive-regressive sedimentary cycles, and they are due to Quaternary glacio-eustatic sea level variations. In fact, during the sea level low stand associated with the last glacial maximum (c.18\u201320,000 yBP) the sea level was 110\u2013120 m lower than its present level and the continental shelf was exposed. During the Versilian Transgression the coastline migrated from the shelf break to its present position. This migration was not continuous and conspicuous sediment bodies, associated with deltaic or littoral systems, were deposited during static periods. The results of a marine geology campaign with seismostratigraphic and sedimentological analyses enabled us to distinguish gravelly and sandy littoral deposits at depths of 20\u201340 m near the coast and 60\u201380 m on the outer shelf, in areas with only a thin Holocene mud cover (high stand deposits)

    Geological risks in large cities: The landslides triggered in the city of Rome (Italy) by the rainfall of 31 January-2 February 2014

    No full text
    An exceptional rainfall battered the city of Rome (Italy) from 31 January to 2 February 2014. The event had variable intensity and duration in the different parts of the city. The exceptionality of the event lies in the intensity of rainfall cumulated in 6 hours (return period > 50 years) and in its uneven distribution over the urban area. The event triggered a number of landslides of different type, which caused substantial damage. Researchers from the Centro di Ricerca per i Rischi Geologici (Research Centre on Prediction, Prevention and Control of Geological Risks - CERI) of the University of Rome "Sapienza" carried out field surveys and assessments immediately after the event. The team detected and inventoried 68 landslides, mostly occurring in the sandy and sandy-silty deposits of the Monte Mario, Ponte Galeria and Valle Giulia Formations. The complete inventory of the landslides is accessible via WebGIS on CERI's website http://www.ceri.uniroma1.it/cn/landslidesroma.jsp. The spatial distribution of the landslides evidences that 69% occurred in clastic deposits of sedimentary origin and only 6% in volcanic deposits. This finding disagrees with more general statistical data, based on the inventory of Rome's historical landslides, indicating that almost 41% of slope instabilities occur in volcanic deposits and almost 12% in sedimentary ones. In the data reported here, this apparent contradiction is justified by the fact that most the rainfall under review was concentrated in the north-western portion of Rome's urban area, whose hills accommodate outcrops of dominantly sedimentary deposits from Plio-Pleistocene marine and continental cycles. © Sapienza Università Editrice
    corecore